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22 Solution of linear systems of equations

*5,

*9,

10.

*11.

12,

*13.

applications involving large matrices (or small computers), storage requirements
can sometimes present problems. In Problem 1if A, B, and C are all saved, then 3n®
locations are needed. Suppose that A is no longer needed once the product C has
been formed. How might the program in Problem 1 be modified so that only 2x® + n
locations are needed to form C? [Hint: Once the first row of C is formed, the first
row of A is no longer needed.]

. How many multiplications must be performed to form the product of two (# X n)

matrices?

. How many multiplications must be performed to form the product Lx when L is an

(n X n) lower triangular matrix and x is an (# X 1) column vector? (Do not count
multiplications by zero.)

Write a computer program to evaluate the determinant of an arbitrary (5 X 5)
matrix, using a cofactor expansion along the first row. (This is a fairly challenging
programming problem.)

. How many multiplications must be performed to evaluate the determinant of an

(n X n) matrix according to the procedure of Problem 5 when n = 3, when n = 4,
when n = 3, and for arbitrary n? (For n = 10, more than 3,000,000 multiplications
are required. If a person were able to multiply two numbers and record the result at
a rate of one per second, it would require 126 eight-hour days to find the determi-
nant of a (10 X 10) matrix using a cofactor expansion.)

. Let L = (£;;) be a lower triangular (5 X 5) matrix such that €,,€,,¢33¢44¢5s5 # 0. By

considering the equation Lx = 0, show that L is nonsingular. [Hint: Testing Lx = 8
is criterion (1) for nonsingularity.] Extend your proof to an arbitrary (n X n) lower
triangular matrix L such that ¢;,€5 . . . €,, # 0.

. Let L be as in Problem 7, but this time suppose that ¢,, = 0 and #,5 # 0. Show there

is a nonzero vector x such that Lx = 0.

Let L = (¢;) be an (n X n) lower triangular matrix. Show that L is singular if and
only if €65 ... €y, = 0.

Let T and § be (n X n) upper triangular matrices. Use the definition of matrix
multiplication to show that the product ST is also upper triangular.

Let A be a lower (upper) triangular nonsingular matrix. Show that A~ is also lower
(upper) triangular. [Hint: Consider the equation AA~! = I, entry by entry.]

If A and B are (n X n) nonsingular matrices, show that AB and BA are also nonsingu-
lar. Furthermore, show that (AB)™! = B7'A~L.

a) If Ais (r X s) and B is (r X s), show that (A + B)T = AT + BT.
b) f Ais (r X s)and B is (s X p), show that (AB)T = BTAT.
¢) Show (AT)T = A.

2.2 DIRECT METHODS

The term direct method refers to a numerical procedure that can be executed in
a finite number of steps. Direct methods are in contrast to iterative methods,
which generate an infinite sequence of approximations that (it is hoped) con-
verge to the solution. We will discuss iterative methods in Section 2.4. The two
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most common types of direct methods for solving the system (2. 1) are elimina-
tion methods and factorization methods.

2.2.1. Gauss Elimination

Gauss elimination is the familiar variable elimination technique whereby the
variables are climinated one at a time to reduce the original system to an
equivalent triangular system. The first step in this procedure is to replace the
ith equation by the equation that is the result of muitiplying the first equation by
(—au/a,,) and adding it to the original ith equation. Proceeding thus for i = 2,
3, ..., n, we obtain a system of equations equivalent to (2.1):

Xy + ApaXe + 00 GypXy = b,
1 000 1 = 1
a(22)x2 + + aén Xn = b?‘ 2 (2 5)
afra + o+ afn, = b,

(We assume here that ay; # 0. If a;; = 0, we find an a;; # 0, interchange the first
and ith rows, and proceed in the same fashion.) We continue in this manner
until the system is in an equivalent triangular form:

' ’ -— !
a'yXy + alpxs +agxs vt aly a1 Xe-1 a’ X, = b’y
! ' r — ’
azzxz+023x3+"'+a’2,n—1-xn—1 + a'suxy = by

’ ! — !

A'ggxs+ -t ad'y g Xuoa T a'guxn = b3

2.6

1 ’ —_— !
Ay 1, n—1Xn—1 7t Gu_y, n¥n = by
' —_ !
a'p, wXy = by

The solution to this triangular system is now easily found by backsolving; that
is, by solving the last equation for x,, then the (n — 1)st equation for x, -y, and
continuing until each x, where k = n, n — 1, n — 2, . . . 1, is determined.

EXAMPLE 2.6. As a specific case to demonstrate Gauss elimination, consider the
linear system

5x; + Txg+ 6x3+ 5x,=23
Tx, + 10x, + 8xg + Tx, = 32
6x; + 8xp, + 10x; + 9x, = 33
Sxy + Txp + 9x3 + 10x, = 31.

Proceeding as indicated by (2.5), multiply the first equation by —7/5 and add the result to
th; s_econd equation to eliminate x, in the new second equation. Proceeding similarly to
eliminate x, from the third and fourth equations, we obtain an equivalent reduced linear
system

Sx;+  Txg +  6x3 4+ 5x, =23
0.2x; — 0.4x; -0.2
—0.4x, + 2.8x3 + 3x, = 5.4
3x3 + S5x, =8

I
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that corresponds to (2.5). Eliminating x, from the third equation gives the equivalent
linear system

Sx, + Txy + 6x3 + S5x, =23

0.2x, — 0.4x, =-0.2
2xg + 3x, =5
3x3 + 5x, = 8.

Finally by eliminating x, from the fourth equation, we obtain a linear system in the
triangular form of (2.6):
Sx; + Txp + 6x3+ Sx, =23
0.2x, — 0.4x, = -0.2
2%+ 3x,=35
0.5x, = 0.5.

Backsolving the triangular linear system, we find from the fourth equation that x, = 1.
Because we have x,, the third equation yields x; = 1; with x; and x, known, the second
equation says x, = 1; and finally from the first equation, we obtain x; = 1. The coeffi-
cient matrix for the original system is

5 7 6 5
1710 8 7
A=16 8 10 9
5 7 9 10

This matrix is due to T.S. Wilson (see Todd, 1962). The matrix has several interesting
properties and will serve as one example when we discuss topics such as error analysis
and condition numbers.
Continuing this example of solution by variable elimination, consider the (3 X 4)

linear system

Sx, + Txo+ 6x;+ 5x, =23

Tx, + 10x, + 8xg + Txy = 32

6x, + 8x, + 10x; + 9x, = 33.

Proceeding exactly as above, we arrive at the equivalent system

Sx; + Txs + 6x3+ 5x, =123
0.2x, — 0.4x; = -0.2
2xy + 3x, = 5.

Here we see that either x; or x, can be chosen completely arbitrarily. For example,
let x, be arbitrary; then x; = (1/2)(5 — 3x,). Continuing, we obtain x, = 4 — 3x,and x, =
5x, — 4, and we may substitute any value for x, and have a corresponding solution of the
system. In particular if we let x, = 1, we obtain x; = x, = x; = l as above. This example
of a (3 x 4) system shows how Gauss elimination can be used for rectangular systems as
well as for square systems.

In the simple (4 X 4) example above, no row interchanges were necessary.
When Gauss elimination is programmed for use on a digital computer, we will
clearly have to include a statement to check whether we might be dividing by
zero. Thus, given (2.1) to solve, the first step would be to test ay, to determine
whether or not a,; = 0, and then to perform a row interchange if a,; = 0. Having
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obtained the first reduced system (2.5), we would again test atb to see if afy = 0
and perform a row interchange if necessary. Example 2.7 below illustrates the
sort of numerical results that a simple Gauss elimination program will produce.

EXAMPLE 2.7. The basic steps of Gauss elimination that are outlined above were
programmed to solve the system in Example 2.6. The program was executed in single
precision; and as can be seen, the errors in the computed solution range from 0.000583 to
0.00009. For purposes of comparison, the final triangular form of the matrix was printed

out as shown and can be compared with the exact triangular form displayed in Example
2.6.

SOLUTION VECTOR
0.999417E 00
0.100035E 01
0.100015E 01
0.999910E 00

THE TRIANGULARIZED MATRIX

0.500000E 01 0.700000E 01 0.600000E 01 0.500000E 01
0.000000E 00 0.200003E 00 —0.399998E 00 0.190735E-05
0.000000E 00 0.000000E 00 0.200002E 01 0.300000E 01
0.000000E 00 0.000000E 00 0.000000E 00 0.500038E 00

This computer example illustrates the effects of round-off error, and we note that
this computer solution would probably not be satisfactory in most practical problems.
As we shall see later, the coefficient matrix of Example 2.6 is moderately ‘‘ill-
conditioned”’ (see Section 2.3.3). Thus even a few small computer-round-off errors will
induce relatively large errors in the computed solution.

This program was executed again, in double precision, and gave the solution vector
correct to as many places as are listed:

SOLUTION VECTOR
0.10000000D 01
0.10000000D 01
0.10000000D 01
0.10000000D 01

THE TRIANGULARIZED MATRIX

0.500000D 01 0.700000D 01 0.600000D 01 0.500000D 01
0.000000D 00 0.200000D 00 —0.400000D 00 0.444089D-15
0.000000D 00 0.000000D 00 0.200000D 01 0.300000D 01
0.000000D 00 0.000000D 00 0.000000D 00 0.500000D 00

Since linear systems of any appreciable size are normally solved on the
computer, round-off errors can cause problems and the technique of Gauss
elimination must be examined more carefully. In addition to the question of
rounding errors, other aspects must be considered for practical and efficient
implementation of numerical procedures on the machine. Three aspects that
can influence the choice of an algorithm are storage requirements, round-off
errors, and execution time.
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2.2.2. Operations Counts

For the system (2.1), storage requirements are clearly linked to the size of the
system, #. In order to give a feeling for the execution time and rounding errors
of direct methods, an operations count is customary. An operations count 1s a
calculation of the number of arithmetic operations necessary to carry out the
direct method. One rationale for an operations count is that execution time and
the error caused by round-off in the computed solution are both related to the
total number of arithmetic operations. For Gauss elimination, multiplication
and addition are (essentially) the only arithmetic operations performed. (We
consider ‘‘division’’ as a multiplication and *‘subtraction’” as an addition.) To
illustrate how an operations count is made, we will count the mulitiplications
necessary to solve the system (2.1) by Gauss elimination. The reader can
quickly verify that the necessary number of additions is about the same as the
number of multiplications.

To transform (2.1) to the equivalent system (2.5) requires (n — I)(n + 1)
multiplications. This result is seen by noting that to eliminate the variable x, in
the ith equation of (2.1), we multiply the first equation a;;x; + apx, + -+ +
aax, = b, by the scalar —a;/a;; and add the resulting multiple of the first
equation to the ith equation. It takes one multiplication to form the scalar
—ay/ay, (We don’t count multiplications by —1) and an additional » multiplica-
tions to form each of the products.

_'a'l ‘a~1 —4a; —a;
L ay,, Sl .., = Ayns s b,.
ay a ap ay

Note that there is no need to form the product (—a;,/ay,)a,; since we already
know we are going to have 0 as the scalar multiplying x, in the new ith equation.
Thus multiplying the first equation by —a;,/a,, and adding the result to the ith
equation to produce the new ith equation

aPx, + ar, + oo+ i, = B @

takes (# + 1) multiplications (and n additions). We have to perform this variable
elimination in rows 2, 3, . . ., n and hence require a total of (n — 1)(n + 1)
multiplications to produce the equivalent reduced system (2.5).

Given the system (2.5), the same analysis shows that » multiplications are
needed to eliminate x, in equations 3, 4, . . . , n of (2.5). Thus the next step of
Gauss elimination that results in

2
affx, + afx, + afx; + - + a@x, = bP
a@x; + a@xs + -0+ ax, = bP

afxs + o+ afix, = b 2.8)

agxy + -0+ oamx, = P
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takes (n — 2)n multiplications. Continuing until the triangular system (2.6) is
obtained, we have performed atotalof (n — D(n + D+ (n ~2n +---+ 1-3
multiplications. To evaluate this sum, we write it symbolically as

n—1 n—1 n—1
Si+n=3 p2+2 3 (2.9
i=1 i=1 i=1

In this form, using the well-known formulas for the sum of the first (n — 1)
integers and the sum of the first (n — 1) integers squared, we find that a total of

n(n — D2n = 1) nn - N2n +5)
6 6

+nn-1= 2.10)
multiplications are needed to produce an equivalent triangular system from a
square (n X n) system.

That essentially #*/3 multiplications are needed to triangularize (2.1) turns
out to be quite an important observation. For the moment, however, we have
not completed the operations count of Gauss elimination. We have yet to count
the multiplications necessary to backsolve the triangular system (2.6). We leave
it to the reader to show that n(n + 1)/2 multiplications are required to solve
(2.6). Thus the bulk of the computation involved in Gauss elimination is in
triangularizing the coefficient matrix.

2.2.3. Pivoting and Scaling in Gauss
Elimination

One modification of Gauss elimination is relatively easy to program and should
in most cases reduce the effects of round-off error. To illustrate, we first con-
sider the following example from Forsythe (1967); for simplicity, we consider a
three-digit floating-decimal machine. [Recall, we assumed in Chapter 1 that on
such a machine the arithmetic operations are done in a six-digit mode and then
rounded to three digits. For example, this machine will record (1 — 10000) as
— 10000.]

EXAMPLE 2.8.*

0.0001x + 1.00y = 1.00
1.00x + 1.00y = 2.00

The true solution rounded to five decimals is x = 1.00010 and y = 0.99990. If we proceed
as above, without rearranging the equations, we obtain —10000y = —10000 and so we
gety = 1.00 and x = 0.00, quite different from the true solution. However if we rewrite

*Reprinted with permission from G. E. Forsythe, ‘*Today’s computational methods of
linear algebra,”” SIAM Review, Vol. 9, 1967. Copyright © 1967 by Society for Industrial
and Applied Mathematics.
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the system as

1.00x + 1.00y = 2.00
0.0001x + 1.00y = 1.00,

then we obtain the answer x = 1.00 and y = 1.00, a remarkable improvement

This example demonstrates one source of round-off error; namely, round-
ing errors can become an important factor in adding two numbers if one is much
larger than the other, and the significant digits of the smaller one are essentially
lost. A technique to compensate for this loss is called pivoting and is explained
below. In ordinary Gauss elimination if |a,,| is relatively small in comparison
with some |a;;|, then the multiplicative factor (—a;/a,,) is a relatively larger
number in magnitude. Let X = —a;,/a,,; then the result of multiplying the first
equation by A and adding to the ith equation is the new ith equation

(@ + Aag)xe + -+ + (@i + N@y)xn = b; + \b,.

If A is large, then significant rounding errors can occur and can be quite harm-
ful. In particular if A is large, then adding a multiple of A times the first equation
to the ith equation may destroy most of the information in the ith equation (if
Aa,;is large relative to a;; for 2 < j < n, the effect is almost the same as replacing
the ith equation by a multiple of the first equation). If Aa,; is small relative to a;;,
rounding can still occur. However in this case the effect will be minimal in that
the information in the ith equation will be left nearly intact.

With these ideas in mind, we modify the steps of Gauss elimination as
follows. Find a row index [ such that

lan| = max ||,
1=i=n

and rewrite the system so that the Ith equation becomes the first equation.
{Note that this altered system still has the same solution as the original system.)
Now the multiplicative constant to eliminate the coefficients of x, is (—a;/a;,),
which is the relatively smallest factor we could obtain in this fashion. Thus the
effect of the round-off error is reduced in the remaining equations. This process
is repeated for each successive variable elimination until the triangularization is
completed. This technique is known as partial pivoting.

Further reduction of round-off error can be accomplished in the following
manner. As the first step, find {a;,| = max,<; ;<, {a;|. Retain the Ith equation
and eliminate the coefficient of x, in the ith equation, 1 =i =< n, i # I, by
replacing the ith equation by (—a;,/a;,) times the Ith equation plus the original
ith equation. Repeat this process until the final system can be backsolved in a
manner similar to that for a triangular system. This process, called total pivot-
ing, reduces the effect of round-off error over partial pivoting but is more
complicated to program since the order in which the variables are eliminated
must be recorded.

In Fig. 2.1 we list a FORTRAN subroutine that uses Gauss elimination with
partial pivoting to solve a square system Ax = b. For convenience of computa-
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SUBROUT INE GAUSS(AsByXsNyMAINDM, IERROR RNORM)
DIMENSION A(MATNDOM,MAINDM),B{MAINDM), X{MAINDM)
DIMENSION AUG{50+51)

NM1=N-1

NP1=N+1

SEY UP THE AUGMENTED MATRIX FOR AX=B.

DO 2 I=1,N
DO L J=1eN
AUGLT ) =A(T,J)
1 CONTINUE
AUGI L yNP1)=8BI(1])
2 CONTINUE

THE OQUTER LOOP USES ELEMENTARY ROW OPERATIONS TO TRANSFORM
THE AUGMENTED MATRIX TO ECHELON FORM.

DO 8 I=1,NM1

SEARCH FOR THE LARGEST ENTRY IN COLUMN I, ROWS I THROUGH N.
IPIVOY IS THE ROW INDEX OF YHE LARGEST ENTRY,

PIVOT=0.
DO 3 J=IsN
TEMP=ABS{AUG(J 1))
IF(PIVOT.GE.TEMP} GO TO 3
PIVOT=TEMP
IPIvaT=y

3 CONTINUE
IF(PIVOT.EQ.0.} GO TO 13
[F(IPIVAT.EQ. L) GO TG 5

INTERCHANGE ROW I AND ROW IPIvaT.

DO 4 K=1,NP1
TEMP=AUGI(I +K)
AUG( T K)=AUGLIPIVOT,(K])
AUG(IPIVOT K)=TEMP

4 CONTINUE

ZERD ENTRIES (I#1,1)y (142500 seees(Nyt) IN THE AUGMENTED MATRIX.

5 (Pl=1+]
DO 7 K=IP],N
Q=-AUGIKsI}/AUG(I,I)
AUGIK,1)=0.
DO 6 J=IPlyNP1
AUGI Ko J)=Q%AUGI ] ¢J) +AUGIK,J)
6 CONT INUE
T CONVINUE
8 CONTINUE
IF(AUGINsN) .EQ.0.) GO TO 13

BACKSOLVE TO OBTAIN A SOLUTION TO AX=8.

XIN)=AUGIN,NPL)/AUGIN,N)
DO 10 K=1,NM1
0=0.
DO 9 J=1,.K
Q=Q+AUG(N=K ¢NPL=J) EXINPL1=J)
9 CONTINUE
XIN=-K)=(AUGEN-K s NP L) =Q) ZAUGI N-K s N—K )
10  CONTINUE

Figure 2.1 Subroutine GAUSS.

-—m
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CALCULATE THE NORM OF THE RESIDUAL VECTOR, B-AX.
SET IERROR=1 AND RETURN.

[N eNaXel

RSQ=0.
DO 12 I=1sN
Q=0.
DO 11 J=14N
Q=Q+A( T+ J)*X(J)
11 CONT INUE
RESI=B(1)-Q
RMAG=ABS(RESI)
RSQ=RSQ+RMAG**2
12 CONTINUE
RNORM=SQRT(RSQ)
IERROR=1
RETURN

ABNORMAL RETURN -—- REDUCTION TO ECHELON FORM PRODUCES A ZERO
ENTRY ON THE DIAGONAL. THE MATRIX A MAY BE SINGULAR.

[aXsNaXnl

13 TERROR=2
RETURN
END

Figure 2.1 (continued)

tion we perform Gauss elimination on the augmented matrix [A:b]. [Recall that
if Ais (n X n), then the augmented matrix for the system Ax = bisthe (n X (n +
1)) matrix obtained by attaching the column b to the (n X n) array A so that b is
the (n + 1)st column of [A:b]. Using Gauss elimination to transform A to
triangular form means, in the language of linear algebra, that we are trying to
reduce the augmented matrix [A:b] to “‘echelon” form.] Like others listed
later, the program in Fig. 2.1 was written with an emphasis on simplicity and
readability, with a minimum of special features and options. Also, in the inter-
ests of clarity, we include only enough comments to highlight the main compu-
tational segments of the program.

The inputs required to use Subroutine GAUSS to solve an (n X n) system
Ax = b are these: A, an (N X N) matrix; B, an (N X 1) vector; N, the size of the
system Ax = b; MAINDM, the declared dimension of the array A in the calling
program. Subroutine GAUSS will return these: X, an (N X 1) array containing
the machine solution to Ax = b if Gauss elimination is successful; IERROR, an
error flag set to 1 if the elimination is successful and set to 2 if elimination
cannot proceed because of a zero pivot; RNORM, a value that measures the
size of the residual vector (we will discuss this in Section 2.3). Fig. 2.2 lists a
simple program that reads in a system Ax = b and calls GAUSS to solve the
system.

This section concludes with a brief discussion of a concept known as scal-
ing. From the discussion above on pivoting one might expect that if the mag-
nitudes of the elements of the coefficient matrix vary greatly in size, then the
solution of Ax = b is more susceptible to rounding error. In practice this
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DIMENSION A(20,20),B(20),X(20]}
MAINDM=290
1 READ 1004N
IFINJLE.L) STQOP
DO 2 I=1,N
READ 101,(A(L,J)sJ=14N)BLI)
2 CONTINUE
CALL GAUSS(A,ByXoNyMAINDM, IERROR y RNORM)
PRINT 102, {ERROR
IF(IERROR.EQ.2) GO TO 1
PRINT 103,RNORM
PRINT 104,{X11),1=1,N)
100 FORMATI(12)
101 FORMAT(21F4.0)
102 FORMAT{8H IERROR=,13)
103 FORMAT(TH RNORM=4F20.6)}
104 FORMAT(1H +6E16.6)
GO 70 1
END

Figure 2.2

expectation is usually correct. This variation in magnitudes can be countered
by multiplying the rows and columns of A by scaling constants to produce a
matrix of the form B = D, AD, where D, and D, are diagonal matrices for the
row scaling and the column scaling, respectively, with the scaling constants as
their diagonal elements. The system Ax = b is then equivalent to the system
(D, AD.)(D;x) = D,b, which is solved by successively solving Bz = D,b and
x = D.z. The problem of constructing a practical computational scheme for
scaling a matrix A is not well understood at this time, and an extensive discus-
sion can be found in Young and Gregory (1973) and in the LINPACK User’s
Guide (1979). (LINPACK is an excellent library of mathematical software for
numerical linear algebra.)

One frequently used approach to scaling is to divide each entry in each row
by the largest (in magnitude) entry in that row. This approach uses row scaling
only; so in the context of the discussion above, D, = I. In particular, for each i,
1 =i =< n, define

d; = max |a,

1=j=n

and let 1/d; be the diagonal elements of D.. This method produces B = (b;)
where B = D, A and where max, - j=pn|b;;| = 1 for 1 = i < n. Unfortunately this
technigue can introduce rounding error in every element of B. An alternative,
called machine-base scaling, is to replace 1/d; by 1/b*: where b is the base of
the machine arithmetic and k; is an integer such that d; = b*:. The resulting
divisions are performed exactly using an exponent shift so that no rounding
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results (for example, on a hexadecimal machine such as an IBM 370, row i is
scaled by a power of 16).

Another sort of scaling that is frequently employed is called implicit pivot-
ing; here, the term “‘implicit’’ is used because the scaling multiplications are
not actually performed, but rather the Gauss elimination algorithm selects the
pivot element at each stage of the elimination as if scaling had taken place. In
particular, let A% = (4¥) be the coefficient matrix at the kth step of Gauss
elimination. For A%, compute values d{® as above, find the row index 7 that
satisfies

jatel ot

= max o
k
dgk) ksi<n dg !

We use row I as the pivot row; so we interchange row k with row 7, b, with b,,
and then proceed with the elimination as usual.

2.2.4. Implementation of Gauss
Elimination and LU-decomposition

Besides pivoting, another important consideration is the efficient programming
of Gauss elimination and we wish to mention one aspect of this general organi-
zational problem. Frequently in practice, one is confronted with solving a
succession of linear systems that have the same coefficient matrix. That is,
solve

AX = Dby, i=12,...,m (2.11)

(For example, such was the case when we were computing A™? in the first
section.) If we employ a Gauss elimination routine to solve, say, Ax = b,, then
we first obtain an equivalent triangular system [such as (2.6)]

A'x=b'y; (2.12)

and this system is backsolved. If we next employ the same routine to solve
Ax = by, we obtain, as above,

A'x = b'y; (2.13)

and (2.13) is then backsolved,

A moment’s reflection shows that instead of calling the same routine re-
peatedly to solve the m systems in (2.11), it would be better if we could store A"
and just have a procedure to generate b} from b;. If such could be done, the
approximately n%3 operations necessary to triangularize A would have to be
performed only once. This programming problem can be solved by considering
how the triangular system (2.6) is obtained from the original system (2.1). In
particular as the system Ax = b is transformed to 4'x = b’, the vector b is
transformed to the vector b’ by the same sequence of scalar multiples that
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transforms A to the triangular matrix A’. Thus what is needed is some way to
store the sequence of the scalar multiples of the triangularization. Rather than
trying to elaborate abstractly on this method, we will give an example that
makes the procedure clear.

EXAMPLE 2.9. Consider the linear system

N+t 20t x3=b
3x; + 4x, = b,. 2.14)
26, + 10x, + 4xy = by

We are seeking the scalar multiples to transform b into b’; so we first determine how A is
transformed to A’. That is, we focus our attention upon how to triangularize the matrix

I 21
A=13 40 (2.15)
2 10 4

by adding multiples of one row to the next. Multiplying the first row by —3 and adding
the resuit to the second row, then multiplying the first row by ~2 and adding the result to
the third row, we obtain

1 2 1
AV =10 -2 -3} M,, = -3, My = -2 (2.16)
0 6 2

where M,; and M, are respective multiples needed to introduce zeros in the first column
below the main diagonal. Continuing this simple example, if we multiply the second row
of A by 3 and add to the third row, we obtain A’ where

1 2 1
A'=10 -2 -3}, My, = 3. (2.17)
0o 0 -7

If we had performed Gauss elimination on the system (2.14), the coefficient matrix of the
equivalent triangular system would clearly be A’ in (2.17).

Moreover, the multiples M,,, M;,, and M;, tell us how to transform b. To be
specific, we first obtain

b, b ]
bV = by + My b, | = | bV, (2.18)
by + Muby | | bS]
and finally
bf” bl’—
b’ = | bV =1b;|. .19
0+ Mubf®| | b |

Clearly, in terms of efficient storage, we can overlay the scalar multiples M;; in the zero
entries of A’ that they introduce during the triangularization.
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Thus we proceed as indicated by the arrows:

1 21 12 1 L2 1
A={3 4 0|>{-31-2 -3|>(-3/-2 -3 /=4" (2.20)
2 10 4 -2 6 2 ~2 31-7

(Note: no additional locations are needed to store M,,, M,,, and M,,.) Moreover, the
positions of the multiples in A” describe how they are to operate on vector b to trans-
form b to b’. As an iliustration, consider

X+ 2x,+ x3 =3
3x, + Ax, =3 (2.21)
2x, + 10x; + 4x, = 10,

which we know from above is equivalent to

Xy + 2%+ x3 = by
—2x, — 3x; = b (2.22)
‘"7X3 = b:;

where we get the coefficients of (2.22) from the upper triangle portion of A”. To find b},
b;, by, we change b to b’ by the sequence

3 3 3 3 3
b=| 3[—=] 3+(-3)-3[=|~-6]—>] -6 =] ~6] (2.23)
10 10+(-2)-3 4 4+3-(—6) -14

where the numbers below the main diagonal in A” define the sequence. Thus from A",
we can read that (2.21) is equivalent to

X3+ 26+ x3=3
—2x, — 3x3 = —6 (2.29)
~Tx; = —14;

and backsolving, we obtain x; = 2, x, = 0, and x, = 1.

The basic ideas in Example 2.9 are fairly easy to program. One sees in
(2.23) how solving several systems of the form Ax = b,, 1 < k& < m, can be
accommodated by simple transformations of the vector on the right-hand side.
In this simple example no row interchanges were necessary, but accounting for
interchanges is also an easy bookkeeping task, one which we will be discussing
shortly.

One might suppose if m in (2.11) is very large, that the most efficient way of
solving the m linear systems, Ax = by, 1 = k < m, is first to calculate A~! and
then generate the kth solution vector, y, = A~'b;, for each k. However since
A™'is an (n X n) matrix, it follows that n? multiplications are required to
compute A”'b,. By contrast, Problem 9 shows that a total of n(n — 1)/2 multi-
plications are necessary to generate b, from b, and a total of n(n + 1)/2 multi-
plications are needed to solve A’x = b;. Thus if we know the triangular matrix
A’ and the n(n — 1)/2 scalar muitiples needed to generate b, we can solve Ax =
b, with precisely as many multiplications as it takes to form A~'b,. Clearly
then, the computation of A~! for solving Ax = b, i = 1,2,..., m is not



3
i
i
"n
.

2.2 Direct methods 35

justified since in order to find A~*, we must first solve n systems of equations of
the form Ax = e, i =1, 2, ..., n(see Section 2.1).

At this point, we would like to offer as a guideline the following: in a
practical problem it is seldom necessary to compute either the inverse of a
matrix, the determinant of a matrix, or the power of a matrix. In the formula-
tion of a problem it is often convenient to use inverses, powers, and determi-
nants in an abstract mathematical sense (e.g., the solution of Ax = b is given by
x = A-'b). However, it is rare to encounter a problem in which the solution
requires the computation of inverses, powers, or determinants. Thus for exam-
ple, the solution to Ax = b is found efficiently by using Gauss elimination and is
only represented mathematically by A~'b. Exceptions to the guidelines above
do occur. For example, in certain problems in statistical analysis, the inverse
matrix is of significance and may have to be calculated.

Although the basic ideas in Example 2.9 are fairly simple to program, they
require examination in more detail and expression in matrix terms for some
later analyses. Briefly, we will see that Gauss elimination with partial or im-
plicit pivoting applied to Ax = b amounts (in effect) to constructing a nonsingu-
lar matrix $ and then forming an equivalent system SAx = Sh where SA = U'is
an upper-triangular matrix. There are primarily two reasons for wanting to view
Gauss elimination in matrix terms. First of all, such a view provides a logical
and conceptually convenient framework in which to organize an efficient Gauss
elimination package. Perhaps more important, this framework will serve to
show how to obtain estimates to the ‘‘condition number’” of A (see Section
2.3.3). Such estimates are quite important because they give us a way to assess
the accuracy of the machine solution to a problem Ax = b.

As we stated above, using Gauss elimination to solve Ax = b amounts
formally to two steps (the *‘factor’ step and the ‘‘solve” step).

1. Find a nonsingular matrix § such that SA = U where U is upper triangular.
2. Solve the equivalent triangular system Ux = Sb.

To see this two-step procedure in matrix terms, let A and L, be the matrices

ay Gy dyig "7 Qu 1 00 -0
Ay dyy dgz ~°° Qap my 1.0 -+ 0
A= lay ap Gy " G Ly=|my 0 1 - 0
Qp1 Qpz Gz """ Qmn My, 0 0 - 1

where m;; = —a;,/a;;, 2 < i < n. Forming the product A, = L,A will produce the
matrix

Ay Qe Gy " Gy
0 612’2 a2'3 o aén
—_ ! .
A =10 Aze Gz 0 A |

’ ' '
0 dnz Qupz """ Oy
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and in fact, forming A, = L,A is the same as adding a multiple of m;, times the
first row of A to the ith row of A, 2 < i < n. In other words, forming A, = LA is
equivalent to carrying out the first stage of Gauss elimination on A if no row
interchange is made. Similarly if L, is the matrix

1 0 0 -+ 0
01 0 --- 0
L2 = 0 m32 1 00Q0 Q
O mnz 0 A 1
where my, = —a'ylas,, 3 =< i < n, then the matrix A, = L,A; is what would be

produced by the second stage of Gauss elimination, again if no row interchange
is made. If no row interchanges are made at any stage, then Gauss elimination
amounts (in matrix terms) to constructing an upper-triangular matrix U where
U is given by

U=L, Ly L,L,A.

Setting S = L,_,L,_, -+ L,L,, we have U = SA, which completes the factor
step. (Note that S is lower triangular; hence §~! = L is also lower triangular.
Thus since U = SA, we have in effect factored A into a product of the form A =
LU where L is lower triangular and U is upper triangular. Such a factorization
is called an LU-decomposition; we return to this topic later.) Having U = SA,
we can now solve a problem Ax = b by solving the equivalent triangular system
Ux = Sb.

In the discussion above we did not account for the possibility of row
interchanges; and as we know, Gauss elimination with partial or implicit pivot-
ing might require a row interchange at each stage of the elimination. We can
express row interchanges in matrix terms by using permutation matrices. In
particular if an (n X n) matrix P is derived from the identity by interchanging
rows i and j of I, then P is called a permutation matrix. Next, it is easy to verify
that forming the product PA gives the same result as interchanging the ith and
jth rows of A. Thus permutation matrices can be used to incorporate partial or
implicit pivoting into a matrix-theoretic description of Gauss elimination. Sup-
pose P, is the permutation matrix that describes the row interchange at the kth
stage of Gauss elimination where we set P, = I if no interchange is made. Then
in matrix terms the first step of Gauss elimination amounts to forming an
upper-triangular matrix U where

U= Ly 1Po-)Ly-oPy_3) - (LyPy)(L,P)A. (2.25a)

As before, wesetS =1L, P, ,L, P, _,---L,P,L,P;sothat U= SA; and this
completes the factor step.
The solve step now amounts to calculating Sb from

Sb = Ln—IPn—an—ZPn—Z e L2P2L1P1b (2.25b)

and then solving the triangular system Ux = Sb. Clearly if we have several
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systems Ax = b;, i = 1,2, ..., m, then we perform the factor step once to
obtain U = SA. Next, for each i, we form Sb; and solve Ux = Sh;, | <i =< m.
The factor step takes on the order of n3/3 operations, and each application of
the solve step requires n? operations.

Giving Gauss elimination in matrix terms is conceptually useful and also
useful for purposes of error analyses. However, a Gauss elimination program
would not actually calculate the matrix S in the factor step nor form the product
Sb in the solve step; instead the program would be structured along the lines of
Example 2.9. In particular, an elementary Gauss elimination program shouid
consist of at least two subroutines, FACTOR and SOLVE; and we ask the
reader to modify the Gauss elimination program in Fig. 2.1 to accomplish this
task (see Problem 11). As illustrated in Example 2.9, the FACTOR routine
accepts a matrix A and generates a triangular array of multipliers m,,, mg;, . . .
Mg, M3z, My, . . . and also generates the upper-triangular matrix U. The array
of multipliers and the matrix U can be written over A, or stored in a separate
(n X n) array if we do not wish to destroy A in FACTOR. In addition, FACTOR
must keep a record of row interchanges; and this record can be stored in a
vector IPIVOT of length n — 1 where IPIVOT (K) = J means that row k and
row j were interchanged at the kth stage of the elimination.

Given a system Ax = b, subroutine SOLVE is passed the vector b, along
with the array of multipliers, the triangular matrix U, and the vector IPIVOT.
The calculation of Sb in SOLVE is done in n — 1 stages as was illustrated in
Example 2.9. In the first stage if IPIVOT(1) = J, then the entries b, and b; are
interchanged in b, and the interchange produces a new vector, b, =
(B, By, - . ., b,]". Then the entries of b, are modified to produce b, where the
ith entry of b, is changed to b, + myb,, 2 < i = n. In terms of (2.25b),

b,=Pb and b, = L,Pb.

At the second stage, if IPIVOT(2) = K, then the second and kth entries of b, are
switched to produce b,. The entries of b, are then modified to produce by, by
adding a multiple of m;, times the second entry of b, to the ith entry of b,, for 3
= i < n. In terms of (2.25b),

b, =Pb, and b, = L,Pb,.

The remaining stages follow analogously, each stage consists of an interchange
followed by the multiplier operations. The end result is the vector Sb in (2.25b),
and SOLVE can complete its assigned task by backsolving Ux = Sb.

EXAMPLE 2.10. Toillustrate the factor and solve steps, we consider a simple (3 x 3)
system Ax = b. For brevity we let v denote the two- dimensional pivot vector; so v, =
IPIVOT(1) and v, = IPIVOT(2). We also write the multipliers and the matrix U over the
entries of A although it is not necessarily desirable to destroy A in the factor step.

1 -1 0 2
A=12 -1 1 b=144
2 -2 -1 3
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Factor step:

(vi=2 12
R«—R, |1
2
(=3 |L_2_
R;<—R, “% :
-1 ;

Solve step.
=2 J4lmy=—3] 4] =3 4 4
Re—R, |2 | my=~1] 0| Ree—R; |~1| my=—-3 1 ~1]=S5b.
L 3 | -1 0 3

Backsolving Ux = Shyields x; = 1, x, = =1, x, = 1.

As we mentioned earlier, finding a nonsingular matrix § such that SA = U
is equivalent to factoring A as A = S™'U. A related idea is that of an LU-
decomposition for A. Specifically, suppose we can factor the (# X n) matrix A
into a product of two matrices L and U so that

A=LU

where L is an (n X n) lower-triangular matrix and U is an (n X n) upper-
triangular matrix.

If A has a factorization A = LU, then solutions of the system Ax = b are
found by solving LUx = b. To solve LUx = b, we proceed in two stages.

1. Solve Ly = b
2. Solve Ux = y.

In this fashion if Ux =y, then LUx = Ly = b; moreover, both systems Ly = b
and Ux = y are triangular and hence easy to solve. If Gauss elimination pro-
ceeds with no row interchanges, then as we noted before, the matrix § in
(2.25a) is lower triangular and therefore §~' = L is also lower triangular. Thus
Gauss elimination without pivoting can sometimes be used to produce an
LU-decomposition for A. Another procedure is to consider the matrix equation
A=LU:

ay QG o dg, ¢, 0O 0 --- 0 Uy Uyy **0 Uy
Q1 Qg """ dop | _ oy C O -+ 0 0wy 0 Uy . (2.26)

Qui Qne """ dpp Cn e o ]I 0 0 Y
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Writing (2.26) out at length and equating both sides coordinatewise gives n?
equations, which can then be (possibly) solved to determine L and U. We do
not intend to do an extensive analysis of the general case represented by (2.26),
but we do want to observe that as (2.26) is written, L and U both contain n(n +
1)/2 undetermined entries, a total of »* + n undetermined entries. Since we
have just n? equations, it seems feasible that n quantities may be chosen as we
wish. In practice, these free parameters are normally specified by either

€11 = 522 == gnn = ]
or
gll = Uy, €22 = Upgy o v vy gnn = Upp.

The following example should serve to illustrate LU-decomposition.

Given
31 2
A= 6 3 31,
-3 2 -3
find an LU-decomposition of the form
3 1 2 1 0 Olluy wys U
6 3 3j=1¢; 1 010 sy Uy (2.27)

-3 2 3 (31 [32 1 0 0 Ugzs

The most natural way to set up the equations that must be solved is in a
row-by-row fashion:

U= 3 Up =1 s = 2
COolty; = 6 Corlty + iy =3 Colyy + 13 = 3 (2.28)
Oty = —3 Cailtyy + Capltpy = 2 Caattyy + Cagltyy + Uzg = —3.
Solving these equations successively, we obtain
3 1 2 1 0 03 1 2
6 3 3= 2 1 0110 1 14 (2.29)
-3 2 -3 -1 3 1/[]0 0 2
Not all matrices have an LU-decomposition. As a simple example, the
nonsingular matrix
01
A= [1 0} (2.30)

can be shown (Problem 19) to have no LU-decomposition; the singular matrix
I + A does have an LU-decomposition. It is known that if a matrix A is
nonsingular, then there is some rearrangement of the rows of A such that the
rearranged matrix has an LU-decomposition. See Forsythe and Moler (1967),
for a proof.
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To investigate the relations between various LU-decompositions of A, con-
sider the two factorizations A = L,U; and A = L,U,. If A is nonsingular, then
the factors are nonsingular; and L, U, = L,U, implies that L; 'L, = U,U;*. Since
the products and inverses of lower- (upper-) triangular matrices remain lower
(upper) triangular, then L;L, = U,U;! means that L;'L, is a diagonal matrix.
Suppose D = L;'L, where D = (dy), Ly = (by), and L, = (¢); then L, = L,D
implies b;; = cydy, 1 < i = n. Thus if the diagonal elements of L, and L, are the
same, then D = [ and L, = L,. Therefore, setting ¢; = 1, l = i=<n,ina
factorization yields the same factorization as Gauss elimination without pivot-
ing (Problem 16). The solution of Ax = b by this factorization is called the
Doolittle method. Analogously, setting u; = 1,1 < i < n, is known as the Crout
method. An advantage of such factorizations (called *‘compact’” methods) of A
into LU is that the elements ¢; and u;; are computed in terms of inner products.
One can form these inner products in double precision and increase the accu-
racy of L and U. Any similar use of limited double precision in the usual form of
Gauss elimination is not effective [see Atkinson (1978) for a more detailed
discussion].

A similar compact method is often used when A is symmetric and positive
definite; that is, AT = A and x"Ax > 0 for all nonzero vectors x. If we set ¢; =
u;, 1 =i < n, then the resulting factorization yields U = LT and A = LL".
Recursively the elements of L are given by

i=1
fij=(aij—2€ik€jk)/€ﬁ, j:1,2,...,i—1

k=1

i—1
Oy = (ay — 2 4 ALE
k=1

Since A is positive definite, the arguments of the square roots for ¢; are posi-
tive. Since A is symmetric and U = LT, fewer operations are necessary to
compute the factorization. Again inner products may be performed in double
precision. This technique, known as Cholesky’s method, can be shown to be
effective without pivoting or scaling.

There are special sorts of problems for which factorization methods are
very natural to use. One such problem that occurs in many different applied
settings is that of solving a tridiagonal linear system:

apx; t apx, = b,
Ay X1 T GgpXy T d23Xs3 = b,
d3oXe t Q3zXz T G344 = b

AgeXs T QagXy T AasXs = b, (2.31)

an, n—1%n—1 + UppXn = bn

Such systems are called tridiagonal because the coefficient matrix A for the



- T EEE——SS

2.2 Direct methods 41

system (2.31) has three diagonals; or more precisely, a; = 0 ifj<i-1lorifj>
i + 1. These systems commonly arise, for example, when numerical methods
are used to solve two-point boundary value problems or when cubic spline
approximations are used to fit data (see Chapters 7 and 5). In most practical
situations, a factorization of the form (2.32) below is possible:

1 0 0 0 -- 01 Uy ap 0 0 o 0]
le 1 0 0 M 0 0 u22 a23 0 . 0
. 0 (32 1 0 M 0 0 0 u33 (134 0
LU=1g " ¢ 1 0|0 0 0 w0 [ P
0 0 0 0 - 1][0 0 0 0 o u

If A is the coefficient matrix of (2.31), we can express A as A = LU by solving
recursively:

Uy = ap
€ io1 = i, i fUioq, i1 i=2.3 (2.33a)
— _ ( TT Ly Wy e e vy
Us = Ay ii—1di-1, i

Having the factorization above, we can solve (2.31) by first solving Ly = b and
then Ux = y. The explicit equations are

1= by
yi=b; — 4 i—1yi-o i=2,3...,n (2.33b)
-xn = yn/urm

Xpn—i1 = (yn—i = Upi, nr1-iXn 1= D Un—i, n=id i=14,2,...,n— L

PROBLEMS, SECTION 2.2.4

1. Use Subroutine GAUSS to solve the (3 x 3) system of Example 2.2, Section 2.1,
« 2. Repeat Problem 1 for the (3 x 3) system of Example 2.14, Section 2.3.3.

3. Write a program using Subroutine GAUSS to find the inverse of a nonsingular

3 (n X n) matrix and to find the solution of Ax = b by forming x = A~'b. Use this

: program on the system in Problem 2 and compare answers of both problems to the
exact solution: x, = 1, x; = 3, x3 = 2.

4. In Example 2.8 replace .0001 by 10-". Use three-digit floating-decimal calculations
for solving the system without pivoting, and determine the positive integer values of
n for which the computed solution is *‘significantly’’ different from the true solu-
tion.

5. Repeat Problem 4 for the system

1077x;, + x, =3
Xy — X = —2.
6. Use the program in Problem 3 to find A~! for the (4 X 4) matrix A in Example 2.6
(the exact inverse is given in Problem 7 at the end of Section 2.3.4). In theory, AA™?
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10.

11,

12.

13.

14.

15.

= A~'A: but because of round-off errors, we cannot expect this equality in practice.
To illustrate the problem, calculate and print the two products A4~ and A7'A,
using the machine version of A™* found by the program in Problem 3.

. Small changes in the right-hand side of Ax = b may lead to relatively large changes

in the solution. As an illustration, use GAUSS 1o solve Ax = b where A is the matrix
in Problem 6 and b is either of the vectors

a) 23017 b 3.1
3199 . |319
b=13599 b=1309]
31.01 31.1

. Let A, and A, be matrices obtained from the (4 X 4) matrix in Problem 6 by

replacing the (1, 1) entry of A by 5.01 and 4.99, respectively. As in Problem 6,
calculate A;! and A;'. Compare your results with A™1.

. Given the system of equations (2.6), show that n(n + 1)/2 multiplications are re-

quired to solve for x,,, x, ., . - . , X2, X1

Construct a (3 X 3) coefficient matrix where the implicit-scaling row interchanges
are different from the row interchanges of partial pivoting.

Write FACTOR and SOLVE subroutines along the lines described in Section 2.2.4.
If you write these subroutines in FORTRAN and use execution-time dimensioning,
they should be of a form similar to

SUBROUTINE FACTOR(A, SA, IPIVOT, N, MAINDM, IERROR)
SUBROUTINE SOLVE(SA, B, X, IPIVOT, N, MAINDM)

In this version of FACTOR, the array SA contains U in the upper-triangular portion
and the multipliers in the lower-triangular portion; the array A is not destroyed in
FACTOR. To test your program (if you use partial pivoting), put some temporary
print statements in FACTOR and SOLVE and then verify that you duplicate each
stage of the problem worked in Example 2.10. Subroutine GAUSS can be used as a
rough model for designing these two routines.

Let the (r X n) matrix P be derived from the identity matrix by interchanging the ith
and jth rows. If x is any (n X 1) vector, argue that Px is the same as x with the ith and
Jjth components interchanged. Use this result to describe PA where A is any (n X n)
matrix. Show that P = PT = pP~1,

If L, and P, are given as in (2.25), show that L, P, A is the resulting matrix of the first
step of Gauss elimination with partial pivoting on A.

Argue that the matrix § = L,_P,_, . .. L,P,L,P, in (2.25) is nonsingular. (Hint:
First show that AB is nonsingular if and only if both A and B are nonsingular.)
The entries of the (» X n) Hilbert matrix H = (h;;) are given by h; = 1/(i + j — 1).
Hilbert matrices are considered to be badly behaved or ill-conditioned (see Section
2.3.3), and are often used to test solution routines. Write a program using the
subroutines of Problem 11 to find the inverse of the (4 x 4) Hilbert matrix. Test your
answer by forming the products HH ! and H'H. Do the same with the program in
Problem 3 and compare results. (Compute the entries 4 rather than reading them as
data.)
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16. Noting that Gauss elimination in Example 2.6 proceeds without row interchanges,
use only the computations given in this example to give an LU-decomposition for
the (4 X 4) matrix A. Use this decomposition to solve the system Ax = b where b =
[-1, —1, -8, —11]".

- 17. If Lis a lower-triangular matrix equal to ] except that its jth columnis [0, . .. , 0, 1,
M., ...,Myl", showthat L~!is of the same form with jth column [0, . . . , 0,1,
“Miiq, 5o —My]"

18. The Hilbert matrices of Problem 15 are known to be symmetric and positive defi-
nite. Program Cholesky’s method to yield an LU-decomposition of the (4 x 4)
Hilbert matrix. Use this decomposition to compute H~! and again compare results

with Problem 15.
01
a=[1 ]

19. Show that the nonsingular matrix
has no LU-decomposition, but the singular matrix A + I does have. Give the
permutation matrix P such that PA has an LU-decomposition.

20. Apply the Doolittle factorization to the (3 X 3) coefficient matrix in Problem 1 and
use the factorization to solve the system. Use the Cholesky method on the system in
Problem 16.

2.3 ERROR ANALYSIS AND NORMS

There are many different types of linear systems of equations each having their
own special characteristics. Thus we can hardly expect any particular direct
method, like Gauss elimination, to be the best possible method to use in all
circumstances. Moreover if we do use a direct method, our computed solution
will almost certainly be incorrect because of round-off error. Therefore we
need some way to determine the size of the error of any computed solution and
also some way to improve this computed solution. In this section, we will
briefly develop a little of the theoretical background that is needed both for the
analysis of errors and for the analysis of the ‘‘iterative’’ algorithms of Section
2.4 that generate a sequence of approximate solutions to Ax = b. '

The subject of error analysis must be approached somewhat carefully since
a particular computed solution (say x.) to Ax = b may be considered badly in
error or quite acceptable depending on how we intend to use the vector x.. For
example, let x, denote the ‘‘true’’ solution of Ax = b and let r = Ax, — b be the
residual vector. Thenr = Ax, — b = Ax, — Ax, Or

X, — X, = A°'r. (2.34)

If A~* has some very large entries, then Eq. (2.34) demonstrates that the re-
sidual vector, r, might be small, and yet x, might be quite far from x,. Depend-
ing on the context of the problem that gave rise to the equation Ax = b, we
might be happy with having Ax, — b small or we might need x, to be near x,.



44 Solution of linear systems of equations

2.3.1. Vector Norms

In the discussion above, we were forced in a natural way to use words like
“‘large’” and ‘‘small’’ to describe the size of a vector and words like ‘‘near’’ and
‘““far’’ to describe the proximity of two vectors. Also, in subsequent material we
will be developing methods that generate sequences of vectors, {x®}z_,, which
one hopes converge to some vector x. In these methods we will need to have
some idea of how ‘‘close’” each x® is to x in order that we may know how large
k must be so that x® is an acceptable approximation to x. Thus, we must have
some meaningful way to measure the size of a vector or the distance between
two vectors. To do this, we extend the concept of absolute value or magnitude
from the real numbers to vectors. For a vector
X1
x=|" (2.35)

Xn

we already know the Euclidean length |x| = VPR + )2+ + (x,) asa
measure of size. It turns out, as we shall see, that other measures of size for a
vector are also practical to use in many computational problems. This realiza-
tion leads us to the definition of a norm.

To make the setting precise, let R* denote the set of all n-dimensional
vectors with real components

X1
Ro={xjx= || x,x,..., xreal (2.36)
X
A norm on R" is a real-valued function ||| defined on R" and satisfying the three
conditions of (2.37) below (where, as before, 0 denotes the zero vector in R™):

||x|| = 0, and ||x|| = 0 if and only if x = 6; (2.37a)
lax|| = |e] ||x||, for all scalars « and vectors x; (2.37b)
lx + y|| = ||x|| + ||y||, for all vectors x and y. (2.37¢)

As noted above, the quantity ||x|| is thought of as being a measure of the size of
the vector x, and double bars are used to emphasize the distinction between the
norm of a vector and the absolute value of a scalar. Three useful examples of
norms are the so-called ¢, norms, ||:|l,, for R*, p = 1, 2, =:

x|l = || + [xe] + -0 + %]
Xl = VO? + Gl + - + () (2.38)

[l

max'{|x,|,

Xals o oo |Xal}
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EXAMPLE 2.11. By way of illustration for R3,

1
X = l:-2:|, Ixlk =5, lxlk=3  |x} =2 (2.39)

To emphasize further the properties of norms, we now show that the definition
of the function ||x|}; in (2.38) satisfies the three conditions of (2.37). Clearly for
each x € R, ||x|j; = 0. The rest of (2.37a) is also trivial, for if x = 0, then

P
x={%] ana x|} =0
[0
Conversely if
o
x=|"| and |x|} =0,
Lx.”-
then |x,| + |x5| +--- + | x,| = 0and hence x; = x, =+ = x, = 0, orx = 6. For
part (2.37b),
ax,
ax = a:xg :
ax,
80 [lax|l = lax;| + |axy| + -+ + |ox,| = |af ||x|s- If
Y1 xtn
y= y:2’ then x+y= xg-!'yz;
A Xu + Y

and therefore
lIx + y”l =[xy +yi| + o+l o x oy
= ([xl‘ + Ixz( toeert 'xni) + (')’1' + |}’2| +eet |J’nl)
= {lxfl + Iyl

Similarly (Problem 5) it is easy to show that |[{l. is 2 norm for R". The
remaining ¢, norm, ||-|l., is handled not quite so easily. In this case, the triangle
inequality in condition (2.37c) does not follow immediately from the triangle
inequality for absolute values, and (2.37c) is usually demonstrated with an
application of the Cauchy-Schwarz inequality (see Section 2.6).
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Having the concept of a norm, we can now make precise quantitative
statements about size and distance, and can say that Ax, — b is small if ||Ax, —
b||is small and that x. is near x, if ||x, — x;||is small. The definition of a norm also
has some flexibility. For example, we might have reason to insist that the first
coordinate of the residual vector r = Ax, — b is quite critical and must be small,
even at the expense of growth in the other coordinates. In this case we might
select a norm like the one below where x is as in (2.395)

“X” = max{101x1|, |x2|’ lX3|, 000 lxnl}

A norm such as this emphasizes the first coordinate. For example, saying that
||x|| = 10-* implies that |x;| = 1075 for i = 2, 3, ..., n and || = 107
Weightings of this sort are quite common in problems that involve fitting curves
to data and we shall see some examples when we discuss topics such as least-
squares fits.

An idea related to norms that weight different coordinates differently is the
concept of relative error. This is the simple and practical notion that when
the size of the error x. — x, is measured, we should take into account the size of
the components of x,. That is, if x, has components of the order of 10*, then an
error of 0.01 is probably acceptable; if x, has components that are generally of
the order of 1074, then an error like 0.01 is disastrous. Thus if ||| is a norm for
R*, we define ||x, — x,|| to be the absolute error and define the quantity lIxe —
x:|/||x]| to be the relative error. We will usually be more interested in the
relative error than in the absolute error.

EXAMPLE 2.12. Consider the two vectors

0.000397 [0.000504
x, = | 0.000214 and  x, = | 0.000186 |.
0.000309 | 0.000342
Then the vector x, — x, is given by
0.000107 |
x, — x, = | —0.000028 |.
0.000033 |

One measure of the absolute error is ||x. — x|l = 0.000168; so x, seems a reasonably
good approximation to x,. However, checking the relative error, we see that

Ixc — x|,  0.000168
[x[k  0.000920

which more nearly reflects the true state of affairs, i.e., that our approximation x, is in
error by nearly 20 percent. Relative errors become particularly important in computer
programs in which a criterion is needed for terminating an iteration.

0.183,
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3.2. Matrix Norms

In Eq. (2.34) we see that in order to measure the size of x. — x;, we must also be
able to measure the size of the vector (A~'r) since x, is not known. If we knew
A1, then we could simply multiply A~ times r and measure the size of (A7'r)
by one of the vector norms of the previous section. However since A™' is not
known, we must use a different approach since it would be quite inefficient to
compute A~! accurately just to check the accuracy of x.. We are thus led to
consider a way of measuring the ‘‘size’” or ‘‘norms’’ of matrices as well as of
vectors. We shall do this measurement in such a way that we are able to
estimate the ‘‘size’” of A~! by knowing the *‘size’” of A and then to estimate the
norm of (A~'r). The concept of matrix norms is not limited to this particular
problem, i.e., estimating ||x. — x,||, but is practically indispensable in deriving
computational procedures and error estimates for many other problems as we
shall see presently.

By way of notation, let M, denote the set of all (n X n) matrices and let &
denote the (n X n) zero matrix. Then a matrix norm for M, is a real-valued
function ||| which is defined on M, and will satisfy for all (n X n) matrices and A
and B

|A|| = 0 and [|Af| = 0 if and only if A = @ (2.40a)
lleA]| = |e| ||A]| for any scalar o (2.40b)
A + B = ||All + B (2.40¢)
|AB|| = [|A|{||BIl (2.40d)

The addition of condition (2.40d) should be noted. Thus matrix norms have a
triangle inequality for both addition and multiplication.

Just as there are numerous ways of defining specific vector norms, there
are also numerous ways of defining specific matrix norms. We will concentrate
on three norms that are easily computable and are intrinsically related to the
three basic vector norms discussed in the previous section. Specifically if A =
(ay) € M, we define

“’4“1 = Il\s/[]asxn[ En: |aij|] — (Maximum absolute column sum)

i=1

Max [ i |aij|] — (Maximum absolute row sum) (2.41)
=i=n i=1

Al

HAHE =
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EXAMPLE 2.13. Lect

00 10 0
{1t o5 1)
A=lo1 5 1f
00 51

then |||, = Max {1, 2, 25, 3} = 25, ||A|}. = Max {10, 8, 7, 6} = 10, and || A}, = V181 =
13.454.

These three norms are stressed here because they are compatible with the
€., ¥, and ¢, vector norms, respectively. Thus given any matrix A € M, then
for all vectors x € R" it is true that

laxlh = ARl Jdxl < Akl and (axl < [alxh @42

(The reader should be careful to distinguish between vector norms and matrix
norms since they bear the same subscript notation in two of the three cases.
This distinction is clear from the usage. For example, Ax is a vector; so ||Ax|,
denotes the use of the |||, vector norm, whereas ||A||; denotes use of the matrix
norm. The reader should also note that the pairs of matrix and vector norms are
compatible only in the orders given by (2.42) and cannot be mixed. For exam-
ple, let A be given as in the example above and let x = (0, 0, 1, 0)7. Then ||x|; =
1, but [|Ax||, = 25 and ||A|l.||x|; = 10. That is, we cannot expect to have the
inequality [|Ax|l, < [|Al.||x]l. or [|Ax(}, = [|A[}{|x]l.)

Compatibility is a property that connects vector norms and matrix norms.
For example, in (2.34) we had (x, — x,) = A~'r. Using the idea of compatible
vector and matrix norms, we can estimate ||x, — x|}, in terms of || A~*|}; and ||r||;:

% = xdly = [A7'r ]l < |47 |lrlh-

As we shall see in Section 2.4, compatibility is crucial also to a clear under-
standing of iterative methods.

Thus far we have not shown that the three matrix norms satisfy the compati-
bility properties, (2.42), or even that their definitions given by (2.41) satisfy the
necessary norm properties given by (2.40). For the sake of brevity we shall
supply only the necessary proofs for the |||, norm and leave the |||l and |z
norms to the reader.

Let A = (ay;) € M,,; and write A in terms of its column vectors, A = [A,, A,

. LA Letx = (x, x5, . . ., x,)7 be any vector in R*, and recall from Section
2.1 that Ax may be written as Ax = x;A; + XA, + - + x,A,. Since Ax is an
(n x 1) vector, we use (2.37) to get

“AX“l = HX1A1 + XAy + o+ ann”l
= “xlAlul + Hx2A2”1 teeet ”annHI
= bl Al + s sl + -+ [l Al )

= (] + il + -+ b max 4k) = 4 lxl.

1=j=n
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Thus we have shown compatibility for the ||-||, norm.

It is trivial to see that parts (2.40a) and (b) hold for |||;. Since the ith column
of A + Bis precisely the ith column of A plus the ith column of B, part (2.40c) is
also easily seen to be true. For part (2.40d), we recall from Section 2.1 that the
ith column of AB equals AB; where B, is the ith column of B. By compatibility,
|ABi|l = ||A]|.||B:||.- Now choose i such that ||B;||, = ||B;||; for 1 = j < n. Then
|[Bll: = [|Bi]:, and

|48l = max |[ABjf < max [A[L{[Bifh = [|A][Bh =[]

¢ 15

=}=n 1=j=n

and thus part (2.40d) is satisfied. We have therefore shown that ||A||, =
MAaXx; <=, 2}—; |a;| is a matrix norm and that it is compatible with the |||, vector
norm.

We conclude this material with an observation on matrix norms, and con-
sider the three numbers K,, p = 1, 2, «, where if A € M, is given, then

K, = inf{K € R": ||Ax||, = K||x|},, for all x € R"} (2.44)

(where “‘inf”’ denotes infimum or greatest lower bound). It can be shown that
K, = ||A| and K. = ||A|} although the demonstration goes beyond our pur-
poses. We introduce these numbers, however, since K, # ||A||z; and this ex-
plains why we use the subscript “‘E’’ instead of ‘‘2.”” Thus although we have
|Ax||, = ||Allz]|x|l. (compatibility), there is a matrix norm K, = ||A |, smaller for
most matrices than ||A||s, and such that ||Ax |, < ||A|b||x|k for all x € R". ||A |}, is
rather unwieldly in computations and involves some deeper theory to derive,
and so we are satisfied to use the easily computable and compatible HAHE in
place of ||A||; (see Theorem 3.7).

o

233 Condition Numbers and Error
Estimates

In this section, we use the ideas of matrix and vector norms to provide some
more information that is useful in helping to determine how good a computed
(approximate) solution to the system Ax = b is. The norms used below can be
any pair of compatible matrix and vector norms; for convenience we have
omitted the subscripts. The reader can tell from the context whether a particu-
lar norm is a matrix norm or a vector norm. The following theorem provides
valuable information with respect to the relative error.

Theorem 2.1.
Suppose A € M, is nonsingular and x, is an approximation to x,, the exact
solution of Ax = b where b # 6. Then for any compatible matrix and vector
norms
U s = b %= x Jx. - b]

< = ||Al| |A7Y| ——————. (2.45)
Tl ol T
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Proof. Again by (2.34), x, — x, = A”'r where r = Ax, — b. Thus by the
compatability conditions, (2.42), ||jx. — x| = |47l v} = la-}} || ax, — b].
Now Ax, = b; so ||A||||x]| = ||b]}, and HAH/Hb“ = 1/||x||. Thus,

3 L
= la | lAxe = bl

L

l[xc — x|

[Ixl

establishing the right-hand side of (2.45). Now
l4x. — b]l = |irf} = [|Ax. — Axl[ = [|A]l [[xc - x]};

and since {|A|| > 0,

fxe = xff = [|Axe — bIfjAY.
Also x, = A7'b; so ||x,|| = |JA~)| |b]}, or 1/]|x]] = 1/}A~*]|||b||. Combining these
last two inequalities establishes the left-hand side of 2.45). -

Note the appearance of the term || A} || A~!{| in both the upper and the lower
bounds for the relative error. This term is called the condition number and is
denoted by k(A). If one lets € = ||Ax. — b|/||b]|, Eq. (2.45) becomes

< _lx-xd
@]

It is easy to show that x(4) = 1 (Problem 6), and that the closer k{A) is to 1, the
more accurate € becomes as a measurement of the relative error. If «(4) >> 1,
we are alerted to the possibility that the relative error may not be small even if ¢
is small. This situation occurs when the system Ax = b is ill-conditioned; that
is, when small changes in input data can cause large variations in the solution x.
The ultimate in ill-conditioning occurs when A is singular. In this case there are
infinitely many vectors u # 0 such that Au = 0, and hence x, and x, + u are both
solutions of Ax = b even when A and b undergo no change at ail. To show the
connection between the size of k(A) and how close A is to being singular,
it can be proved that if A is nonsingular, then [see Conte and deBoor (1980)]

1 {HA—BH_ - }
—— = min{——— : B is singular ;. (2.46)
k(A)

Hence A can be well approximated (in a relative sense) by a singular matrix if
and only if «(A) is large. To elaborate, we observe that if x, is the computed
solution to Ax = b and if x. #x,, then we have in effect solved a perturbed
problem of the form (A + F)x = b where F is a matrix that accounts for the
errors in the computation. From (2.46) we see that if k(A) is large, then A + E
could be singular or almost singular even if F is small. With A + E almost
singular we need not expect x. to be close to x,. Although we cannot justify it
here, a basic rule of thumb is that if «(A) = 10¥ and we are working in d-decimal
arithmetic, then we should not expect more than (d — k) accurate figures in x, if
A is properly scaled. [See the LINPACK User’s Guide (1979) for a more com-

=< ex(A).
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plete discussion. If d = k we say that A is “‘singular to working precision.”’]

From the discussion above one sees that a Gauss elimination package
should not only provide a machine estimate x, to the solution of Ax = b, but
also give an estimate for x(A) to test the reliability of x.. Since [|A|| can be
calculated immediately, the crux of the problem is to estimate || A~!{|. Obviously
it would be extremely inefficient to try to compute A~! accurately just for this
purpose. An alternative is provided by the following. For any nonzero vector x,
x = A7'Ax, ||x]| = |]A7"|| ||Ax]|; and so

jaiy=

lax|

Hence we can estimate ||A~1|| by trying to make the quotient ||x||/||Ax|| as large
as possible. It can be shown that there exist infinitely many vectors X such that
llA=1)] = ||%]|/]|A%||. In practice we do not actually try to compute such an %
precisely; we merely look for an efficient way of making the quotient |x|/{|Ax||
reasonably large. One reason is that the upper bound for the relative error in
(2.45) is usually very conservative; that is, the bound is usually too large, and
so a smaller estimate for ||A~1|| is probably acceptable in analyzing the relative
Eerror.

Although a detailed theoretical development goes beyond the scope of this
text, the LINPACK authors recommend the following way of obtaining an
estimate for [A~*{|. Let ¢ be a vector whose components are each +1, solve Ay
= ¢, and then solve Ax = y. Use [[x||/||y||as the estimate for [|A~'|}; since y = Ax,
it follows that ||A~1|| = HXH/ llyll. We discuss the choice of =1 in ¢ momentarily,
but for now we consider the solution process for ATy = ¢ with respect to the
computations already performed in Gauss elimination with partial pivoting in
solving Ax = b. In particular, the factor step produces matrices S and U such
that SA = U where

S=1L, \Pu_,...LPLP,.

Thus since A = $71U, A"y = ¢ becomes UT(S~!)"y = ¢. Setting z = (§~1)Ty, we
can solve ATy = ¢ by solving U™z = ¢ and then setting y = S™z. Since U” is
lower triangular, Uz = ¢ is simply solved by successive variable substitution.
The matrix § is characterized by the elimination multiples M;; and by the vector
IPIVOT that records the necessary row interchanges of the pivoting. Without
actually forming S or ST, we can compute STz as follows. The permutation
matrices Py are symmetric, P = P,,and so ST = P,LIP,LY . . . P, LT _,. Each
L} is the same as the identity matrix I except the kth row is

(0, ... 0,1, My oo Myso, no -+ - s Miy).

Hepce for w = [wg, w,, . . ., w,]%, LTw equals w except in the kth component,
which is given by

T —
Liw) = wy + Miciq, iWier + Migo, iWerz T+ Myow,. (2.47)
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Thus to form $7z, we successively multiply by L, as indicated above, and then
perform the interchange specified by P;.

As a simple numerical example, consider the solution of ATy = ¢ where A is
as in Example 2.10; and arbitrarily select ¢ = [1, ~1, —1]T. The matrix U is
displayed in Example 2.10, and it is routine to solve Uz = ¢ to obtain

— Dol DOl

[

The multipliers and the pivot vector v = [2, 3]7 are also given in Example 2.10;
soy = STz is calculated [see (2.47)] by

— - ~ =

N
zZ= L) my = —3 1| Re<—R;
2l %
Homy=-L[ o] w=2 [~
1| ma=-11[_ Ri<=—R, 0l=y.
L 1] | 1] 1

In the example above, the vector ¢ was selected at random to illustrate how-
the solution of ATy = ¢ is organized. What is really wanted is an algorithm that
forms a vector ¢ (Whose entries are = 1) such that the quantity ||x]|/||y||is a good
lower estimate to | A~!|| and where, as before, ATy = ¢ and Ax = y. The reason
for choosing ¢ to have components =1 is beyond the scope of this text and is
developed in Cline, Moler, Stewart, and Wilkinson (1979). However, the sys-
tem ATy = c is solved as above where the specific choices for components of ¢
are predicated on making z as large as possible, where U™z = ¢ and y = §7z.
Part of the explanation for this choice of ¢ lies in the fact that pivoting usually
implies that any ill-conditioning in A is reflected in a corresponding ill-
conditioning in U and that S is usually not ill-conditioned. (The bulk of the
explanation lies in the *‘singular-value decomposition of A,”’ the eigenvalues of
ATA, and their relation to ||A]l,. See the references above.)

Denoting U = (u3), z = (z;), and ¢ = (¢;) where ¢; = =1, the kth step of the
solution of Uz = ¢ is solving the equation

UerZye = €, — U2y + 00+ Up_ (kZk—1)-

A first strategy at this point is to choose the sign of ¢, to be opposite to the sign
of gp = (uyzy + -+ + U1 42— 1) in order to maximize the size of z;. Setting ¢,
= 1 and doing this for 2 = k =< n is one way to determine the vector c. The
authors mentioned above advocate a second, more sophisticated strategy,
which uses some information from the last n — k equations as well as the kth
equation. Again we consider the kth stage (choosing c;) where we assume that
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Zy .- -5 2%-—1and ¢y, . . ., ¢;_, have been already determined. Fork=i<n
we have that the ith equation of Uz = c is

Uz = =pi = Uiz + -+ Ui-y,2i-0) + G (2.48a)

where p; = (uy;z; + Uz, + -+ + 1,2, -1). Note that p; is independent of the
choice of ¢, (p; is determined by the choices ¢, ¢, - . . , ¢;_ that have already
been made) and note also that the kth equation is u,;.z;, = —px + ¢ in this
notation. The choice of ¢, = 1 or ¢, = —1 will determine z;, but it will also
influence the last components z, . {, 242, - . - » 2o Of z. To make a choice for ¢y,
let zi and z; denote the solution of (2.48a) for i = kand for ¢, = 1 and ¢, = —1,

respectively. Given the two possible choices for ¢, we can rewrite (2.48a) for
k + 1= i=<nas either

Uzi = —pi — Wpyr,Zksr Tt Ui—1,%i-1) + €
or (2.48b)
Wizi = —p7 = WUgsri2esr T F UiniZic) G

where pi = p; + uzf and p; = p; + uzi. Since we do not know c; or z;for j =
k + 1, we temporarily set these equal to zero on the right-hand side of (2.48b);
select ¢, = +11if

n n

|=pi + 1] + Z lpil = |—pr — 1] + 2 o7,
i=k+1 i=k+1
and choose ¢, = —1 otherwise. Essentially this procedure is trying to maximize

||z|| by forcing the absolute sum of the terms on the right-hand side of (2.48a) to
be as large as possible when we neglect z; and ¢; for k + 1 < j < n. For k=1,we
can choose ¢, = +1 to start the selection algorithm.

Using this strategy on the matrix A in Example 2.10,

1 -1 0 2 -1 1
A=12 -1 1 and U=1|0 -1 =21,
2 -2 -1 0 0 2

2

weobtaine =[1,1, -1,z =[1/2, =3/2, -9T",and y = [-9, 2, 3]F where Uz =
¢,y = 87z, and ATy = ¢. Then Ax = y where x = [32,41, =217, and so ||A7Y|, =
Ix{l/llyll: = 94/14 = 6.7. Actual calculation of A~* yields || A~!||, = 9. The matrix
above is not ill-conditioned. The strategy was also applied to the (3 X 3) Hilbert
matrix Hy (Problem 15, Section 2.2.4) with the result that || H5!{|, = 371.35 where
[|H3! |l = 408. (We leave it to the reader to verify this result.)

EXAMPLE 2.14. Consider the linear system

6x; + 6x; + 3.00001x, = 30.00002
10x; + 8x, + 4.00003x, = 42.00006
6x; + 4x, + 2.00002x, = 22.00004,
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which has the unique solution x; = 1, x, = 3, x; = 2. This example illustrates the notion
of an ill-conditioned system as well as how matrix norms can be used to analyze the
results of a computational solution. (Recall that a system of linear equations is called
ill-conditioned if ‘‘small’’ changes in the coefficients produce ‘‘large’” changes in the
solution.) Before solving this system, note that the perturbed system below

6x; + 6x, + 3.00001x;, = 30
10x, + 8x, + 4.00003x, = 42
6x; + 4x, + 2.00002x; = 22

has a unique solution x, = 1, x, = 4, x; = 0, which is substantially different from the
solution of the first system, even though the coefficient matrices are the same and the
constants on the right-hand side are the same through six significant figures. Therefore
we call these two systems ill-conditioned.

The first system demonstrates also that we should be cautious about how we
determine whether an estimate to a solution is a good estimate or not. If we try x; =
1, x, = 4, and x, = 0 in the first system, we obtain the residual vector

—2.%x 1075
r=|—6.x10°
—4, x 1073

whereas the actual error in using this estimate is on the order of 10° times as large as the
residual vector would indicate. By (2.34) it follows that the inverse of this coefficient
matrix has large entries.

To show what happens when Gauss elimination is used to solve the first system of
equations, a single-precision Gauss elimination routine was employed and found

X 0.9999898 0.000019 0.000010
x, | = | 1.907699 |, r = | 0.000076 |, X, — X, = 1.092301 |.
X3 4.184615 0.000049 —2.184615

These results are typical if this system is solved on any digital device that has six-
to eight-place accuracy. A double-precision computation on a computer would give
almost exactly the correct answer, but going to double precision is obviously not a
cure-all, for there are simple examples like the one above for which double-precision
arithmetic is not sufficient.

Although this example is somewhat contrived (so that the essence of the
problem is not hidden in a mass of cumbersome calculations), many real-life
problems, particularly in areas such as statistical analysis and least-squares fits,
are ill-conditioned. Thus it is appropriate that a person who must deal with
numerical solutions of linear equations have at hand as many tools as possible
in order to test computed results for accuracy. Often a very reliable test is
simply a feeling for what the computed results are supposed to represent physi-
cally; i.e., whether the answers fit the physical problem. In the absence of a
physical intuition for what the answer should be, or in terms of a tool for a
mathematical analysis of the significance of the computed results, the estimates
of Theorem 2.1 provide a beginning.
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We continue now with Example 2.14 to illustrate how the ||-||; and ||-||.. norms can be

readily used to analyze errors in computed solutions. Thus Ax = b has x, as its solution
vector where

éﬁ

6 6 3.00001 30.00002 1
A=1]10 8 4.00003 |, b = | 42.00006 |, x=|31 (2.49)
6 4 2.00002 22.00004 2

In .order not to obscure the point of this example, let us suppose that a computed
estimate to the solution, x. and hence the residual r = Ax, — b are given by

PRI RS L

,f 1 —0.00002
Xx. = |4 and r = | —0.00006 |. (2.50)
0 —0.00004
; For an analysis of x, — x,, let us use the £, norm and carry only three significant figures.

~ Thus
; lAx, = bl 6 x 107
fibll. 42
Clearly ||All. = 22.00003 ~ 22, and therefore by Theorem 2.1
fixe = xi||-
{ixl

Hence an estimate for {|A~||. is in order. With the following vector x’ we obtain

~ 1.43 x 1078, 2.51)

= (22)(1.43 x 10°9)||A | = 3.15 X 1079)]|A" . 2.52)

0 0.00002
x'=1-1} Ax' = | 0.00006 |. (2.53)
2 0.00004

Thus a lower bound for [|A7!|j. is provided by
It
fAx|. 6. x 10

This estimate for ||A7||. makes the estimate of (2.52) more meaningful, for now the
upper bound for the relative error in (2.52) is at least as large as (3.15 X 1075)(3.33 X 10%)
= 1.05; and in fact,

~3.33 x 10* = A1} (2.54)

lxe — xl-

el

Subsequent sections will make further use of matrix norms in such topics as iterative
procedures to solve Ax = b, methods for finding eigenvalues of matrices, methods for
solving nonlinear systems, and methods of optimization.

2
%

2.3.4. lterative Improvement

If an error analysis indicates that the computed solution is unacceptable, either
we can start again with a different method (such as an indirect method or even
Gauss elimination with higher precision), or we can try to improve the answer
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we have. Iterative improvement (sometimes known as the ‘‘method of residual
correction’’) is a procedure that uses a limited amount of double precision to try
to refine a computed solution x, of the system Ax = b. The procedure is
relatively simple to implement and frequently will yield improved estimates of
the solution. In order to describe this method, we again let x, denote the true
solution of Ax = b and use r = Ax, — b to denote the residual vector [where x, is
a computed (approximate) solution to Ax = b]. If we let e = x, — x,, then Ae =
Ax, — AX; = AX, — b = r. Thus if we could solve Ae = r, we would be able to
find x, from the equation x, = x, — e. The method of iterative improvement is
precisely the implementation of this idea. We immediately see the difficulty
inherent in such a procedure since if we cannot solve Ax = b exactly, we cannot
expect to solve Ae = r exactly.

Iterative improvement, when implemented properly on the computer, at-
tempts to overcome the objection noted above by calculating the residual, r, in
double precision. To be precise, the steps in iterative improvement are these.

1. Calculate r = Ax, — b in double precision.

2. Solve Ae = r and let e. be the computed solution to this system.

3. Letx! = x, — e,
Solving Ae = r is greatly facilitated by retaining the factored form of A from the
previous computation since then one need only form Sr and backsolve the
equivalent system Ue = Sr. We hope that x_ is a better approximation to x, than
was x,. In order to analyze the method a bit more carefully, let e, denote the

true solution to Ae = r. First we can obtain some qualitative information from
the steps outlined above by noting that

fed) _ s = xi

Il

Thus we can hope that given the numbers we have, namely ||e.|| and ||x.||, the
ratio

lecll
]

might give an indication of the relative error.
We next note that the relative error of solving Ae = r is given by

llec — ed|

el

From Step 3 we have that ¢, = x, — X SO since ¢, = x, — x,, it follows that
Hec - ef“ — l_'x_t:i“

lledll % —~ X(‘“'
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Therefore if we can solve Ae = r with a relative error less than 1, then x_, is a
better approximation to x, than is x,.

Finally we recall from (2.45) that an error bound for the relative error is of
the form

ch - x|
||

where M = ||A]| ||A7*|l/||b|} We can find a similar bound for |x{ — x.||/[|x[|
as follows. We let r, = Ae. — r so that A~'r, = e, — ¢, and hence ||A~*||||r.|| =
lle. — e||- But, as above, [le, — e = ||x. — xi|| = [|x¢ — x|}, so [|x¢ — x|| = |47
lAe. — r||. Just as in Theorem 2.1, ||A[|||x|| = ||b|}; so we get 1/[|x.|| < [|A]}/||b]|
Using these two inequalities, we find

Ilxe — x| _flAffla]

Ix vl

‘ which is an inequality of the form

[Ixe — x|
el

where M is the same constant that appears in (2.55a). We can calculate both the
numbers ||Ax, — b|| and ||Ae, — r||; and if || Ae. — r|| <||Ax, — b||, we expect that
x.. might be a relatively better approximation to x, than is x,. Notice that since x;
is an approximation to x, just as was x., we can apply iterative improvement
again and hope to improve x; by solving Ae = Ax; — b. If the corrections, e,
that we obtain in this fashion do not decrease in size, then we have a strong
indication that the matrix A is ill-conditioned.

To illustrate iterative improvement, the method was used on the system in
Example 2.7. The approximate solution, x., was calculated using a single preci-
sion Gauss elimination routine. Displayed below are the results of two applica-
tions of iterative improvement. That is, x; is the result of solving Ae = r’ where
r' = Ax, — b; and x/ is the result of solving Ae = r” where r” = Ax; — b.

< Mj|Ax, - b|| (2.552)

[[4ec — rll

= M|Ae, - r|| (2.55b)

0.999417E 00 0.100004E 01

X = 0.100035E 01 < = 0.999977E 00
¢ 0.100015E 01 ¢ 0.999991E 00
0.999910E 00 0.100000E 01

0.100000E 01

< = 0.100000E 01
¢ 0.100000E 01
0.100000E 01

Thus two steps of the iterative improvement algorithm give the answer correct
to as many places as are printed.



58 Solution of linear systems of equations

PROBLEMS, SECTION 2.3

1. For the matrix A of Problem 7, find a (4 X 1) vector x, x # 6, such that [|Ax|l. =
|All=)}x||..- [Hint: Consider only vectors x such that X[l = 1.1 Find a (4 X 1) vector
v,y # 9, such that [JAyli = [|A[lJlyll;. Use A~ and repeat this problem.

2. Let I be the (n X n) identity matrix. What is ||7]|;? Is there any (n X 1) vector x, x #
0, such that || /x|, = ||]}|x{}?

3. Let x be any vector in R* as given by (2.36), and let {x?}5_, be any sequence of
vectors in R™.

a) Show that [|x||; = ||x{l = ||x|}. = (1/n)}x]}\ for all x € R".

b) From the definition of convergence of a sequence of real numbers, use Part (a) to
show that if lim;_, ., x|}, = 0 for p = 1, 2, or «, then lim; .. [|x?||, = Ofor ¢ = 1,
2,0orw, g # p.

¢) For p given as 1, 2, or =, show that lim,, .. ||x'? — x|, = 0 implies that

lim JAG® ~ x)||, = lim ||Ax? — Ax]|, = 0.

j>x i
4. For each norm, ||-{|,, p = 1, 2, , graph the set of points x = [x,, x,]” in R? such that
lix{l, = 1. Compare this result with the results of Problem 3a.
§. If ||| is given by (2.38), show that it satisfies all three properties of (2.37) and thus is
a norm for R,
6. Let [{,x be any matrix norm on M,. Show that ||A|},JA"|}. = 1. [Hint: Consider
fl2}n = ||}l and use the norm properties (2.40).]
7. Let A be the (4 X 4) coefficient matrix of the system in Example 2.6. Then A~! is
given by
68 —41 —-17 10
~41 25 10 -6
-17 10 5 =37
10 -6 -3 2
Find the condition number ||A||.||A|j» of this matrix. Use the inequality (2.45) of
Theorem 2.1 and the computer results of Example 2.7 to estimate the relative error
fixe ~ Xeflw/|xel}. What is the true relative error?

8. Let A, be the 2 X 2) matrix given by

12
An - [2 4 + 1/,12]'

Find A;' and the condition number ||A,|j«||45'||.. Let n = 100 so that

12
Au = [z 4.0001]’

1 _ Tt
b= [2 - 1/;12] - [1.9999]'

Solve A,px = b mathematically and call the answer x,. Let x. be given by

o[l

AT =

and let



10.

11.

12.

13.

14.

15.

16.

17.

18.
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Find r = A%, ~ b and check the error bound ||x; ~ X¢/}» =< [|A™*||u]|r|l. One might
expect from this problem and from Example 2.14 that ill-conditioned matrices must
have small determinants. Find the determinant of the matrix A in Problem 7 to see
that this suspicion is not always valid.

. For the matrix A, in Problem 8, find a (2 x 2) singular matrix B as in (2.46) such that

(1An = B/ ll4] ~ 1A < .

Let D, be the (n x n) diagonal matrix with diagonal entries all equal to 0.1. Compute
det(D,) and || D, ||..{|D7!|l». Among all singular (n X n) matrices B what is about the
smallest that the number || B — D, || can be? For large n, det(D,) = 0; does this mean
that D, is “‘almost singular’’? [See (2.46).] Is D, ill-conditioned?

In the lines of the computations following (2.47), use the previously computed
information on the factorization of A from Example 2.10 to solve the (3 x 3) system
ATy = b where b is given by

(@ [-5,3, -1]" (b) [8, -8, =317 (o) [1, -2, 2]

Let
1 -1 4
" 1 13
A" = ) -1 4 5 “‘[3}’
1 1
3 1 73
-2
and b= 4 1.
2

Suppose that A” contains the upper-triangular part of a (3 X 3) matrix A after Gauss
elimination, and the lower triangular part of A” contains the elimination multiples;
and suppose that v has recorded the row interchanges. Follow the lines of Section
2.3.3.

a) Solve Ax = b. b) Solve ATy = b. ¢) Compute an estimate for [[A~*]};, as in
Problem 13.

d) Reconstruct the original matrix A and use it to check parts (a) and (b).

Using the first strategy {described prior to (2.48)] for the choice of the vector ¢,
calculate an estimate for || 43|}, where H, is the (3 x 3) Hilbert matrix.

Repeat Problem 13 and use the second strategy [described following (2.48)] for the
choice of the vector c¢.

In describing the technique for solving ATy = b, we used the fact that (§73)T =
(8T)1; prove this.

Following the technique described in Section 2.3 and making use of the subroutines
FACTOR and SOLVE, write a subroutine to estimate the condition number of an
{n x n) matrix A. (Use either the first or the second strategy for choosing the vector
¢ and either the 1 or o norms.)

Use the subroutine in Problem 16 to estimate || H;'||, and || A~"||, where H, is the (3 X
3) Hilbert matrix and A is the (4 X 4) matrix in Example 2.6.

If an (n X n) matrix A has an LU-decomposition where L and U are known, what are
the two necessary steps for solving the system ATy = b? Find an LU-decomposition
of the (3 X 3) coefficient matrix in Example 2.2, Section 2.1, and use the decomposi-
tion in this manner to solve ATy = e,.
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2.4 ITERATIVE METHODS

There are instances in which direct methods such as Gauss elimination and
LU-decomposition may not be the best methods to use for solving the system of
linear equations Ax = b. There is an alternative class of methods that can be
used for this problem; namely, the iterative methods. We will first develop the
concept of an iterative method and give some particular examples. Later we
will discuss the relative merits of iterative and direct methods.

The methods presented here are called iterative because each method is
designed to generate a sequence of vectors (iferates), {x*}z_,, which converge
to the true solution, x,, of Ax = b. The basic idea of iterative methods can be
described as follows.

1. The matrix A is written as the difference of two matrices N and P so that A
= N — P. This decomposition of A is called a splitting.

2. An initial guess x® is made for the solution vector x,.
3. Asequence xV, x® x@®_ ., . ., of estimates to x, is generated by the formula

Nxk+D = px® 4 b, k=0,1,2,.... (2.56)

Since the idea of iteration is probably not too familiar, we present an example
below before discussing iterative methods further.

EXAMPLE 2.15. Let

0 1
1], b=|0], and
4 3

let Ax = b be the linear system to be solved. Let the splitting be given by

4 0 0 0 —1 0
N=10 50 and P=|-2 0 -1
00 4 1 -2 0
X
so that A = N — P. If we denote the vector x*’ by x* = | y, |,
ke

then writing out formula (2.56) yields the equations

dxpyy = —y + 1
SYr+1 = —2xp — Z
AzZp o1 = X — 2y, + 3,

which define x**? for k = 0, 1, 2, . . . . As an initial guess, let

X0 = |1
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Then the first few iterates are
1

x® =111, XV =| —

1

x® =] —

D= e O
BiR B oes

[The true solution in this example is x, = (1/3, —1/3, 1)'"]

Let us return now to the general procedure outlined in steps (1) to (3). The first
thing to observe is that if Ax, = b then Nx, = Px, + b, and vice versa (that is,
solving Ax = b is equivalent to solving Nx = Px + b). In order to get some idea
of what might constitute a good choice for N and P, consider formula (2.56).
This formula says that if we have x®, then we can get the next iterate x**?
provided we can solve the linear system Nx**? = h® where the vector h™® is
given by h® = Px® + b. Thus it is clear that we must require N to be nonsingu-
lar in order to be assured that we can implement the iteration. Furthermore, for
an iterative procedure to be efficient, N should be chosen so that Nx#®+D = p®
is quite easy to solve. This is the case if, for instance, N is chosen to be a
triangular matrix (or a.diagonal matrix as in Example 2.15 above).

Last, the question of convergence to x, must be considered. It is fairly easy
to make a start at answering this question. Let ¢ = x® — x, denote the error
vector at the kth step. As noted above, Nx; = Px, + b; so from this and (2.56) it
follows that N(x*+? — x,) = P(x® — x,) or Ne*+V = Pe®. Since we have
required that N be nonsingular, we can multiply by N~! to obtain e**? =

N-1Pe® for k =0, 1,2, ... .If we set M = N~! P, then a fundamental
relationship among the error vectors has been established:
ekt Y = Me®, k=0,1,2,.... (2.57)

If M is in some sense a ‘‘small’> matrix, then (2.57) would indicate that the
errors are diminishing, or that {x*} — x,. This statement is made more precise
in Theorem 2.2 below. In this theorem, we use the ¢, vector and matrix norms.
It is evident from the proof, however, that any compatible vector and matrix
norms could have been used.

Theorem 2.2
Suppose A = N — P and suppose |[N"'P|l. = X < 1. Then
1. A is nonsingular;

2. if x, is the solution of Ax = b and if {x?} is given by (2.56), then lim;, ., x¥ =
x,; and

3. 1% = x|l = Mx® — x/[|= (o [[€?]le = M|e?]|}.).

Proof. Before establishing Theorem 2.2, it is worth observing that a theorem
of this type has a lot of practical computational value when it is possible to
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verify the hypotheses. The theorem

1. guarantees a solution to the problem,

2. shows that the numerical method will converge to the solution for any
initial guess x@, and

3. indicates to the user of the numerical method how many steps should be
taken to attain a desired accuracy.

Part (1) is easiest to prove by contradiction. If A is singular, then there must be
a nonzero vector y such that Ay = 0. Therefore (N — P)y = 0 ory = N 'Py.
From the compatibility properties of the ¢, vector and matrix norms, it follows
that
[¥ll> = [IN"*Pylle = [|N"*Plla]|y [l = A ]3] (2.58)

Since y # 6, then ||y||. > 0; and hence the inequality (2.58) means that 1 < .
This statement is a contradiction of the hypothesis; so it must be that there is no
nonzero vector y such that Ay = 0. Hence A is nonsingular.

We next establish part (3). If we set M = N Pand e? = x? — x,, then a
repeated application of (2.57) gives

e(]') — Me(j—l) = M(Me(j—Z)) = M2e(j~2) = = Mje(O).

Since ||e?||.. < ||M)].. |e@]lo = |M]I% €] = N]|€®]|, Part (3) of the theorem
is proved. Since lim;.., ||x? — x| = 0 and since ||x” — x| is the absolute
value of the largest component of the vector x — x,, it follows that lim,_, , x? =

x;- This proves part (2). (We note from Problem 3, Section 2.3, that ||x? — xt“2
— 0 and ||x? — x| = 0 as well).

Theorem 2.2 together with the observations made previously allows us to
summarize the properties that a splitting should have in order to define a useful
iterative method. For A = N — P, the properties are these.

1. N should be nonsingular.

2. The equation Nx = h should be easy to solve.

3. ||N-1P|| should be less than 1 for some matrix norm.
In this context, condition (1) assures us that the sequence {x’} given by formula
(2.56) can be generated. Condition (2) assures us that the sequence {x} can be
generated efficiently (after all, we do not want to work as hard to perform one
step of an iterative method as we would to solve Ax = b by a direct method).

Last, condition (3) assures us that the sequence we generate will in fact con-
verge to the solution x,.

2.4.1. Basic lterative Methods

The first and simplest iterative method described in this section is the Jacobi
method. For this method N is taken to be a diagonal matrix with its main
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diagonal entries equal to a;. The matrix P is then determined by P = N — A.
We note that P can be visualized as the sum of a lower-triangular matrix and an
upper-triangular matrix. For the purposes of analyzing the Jacobi method and
the ensuing Gauss-Seidel method, it is quite convenient to think of P in this
way. To be specific, let A = (a;;) be an (n X n) matrix. Define L, D, and U to be
the lower-triangular, diagonal, and upper-triangular parts of A:

0 0 0 e 0 au 0 0 “re 0
a21 0 0 cet 0 0 a22 0 ct 0
L = dsy 227 0 e 0 9 D= 0 0 dss - 0

any dpg dpz " 0 0 0 0 Qnn
0 ap as + an
0 0 a23 et a2n

U={0 0 0 ct dsy |-
o0 O ---0
Thus A = L + D + U, and so the Jacobi splitting is given by N = Dand P =

— (L + V).
The Jacobi method for solving Ax = b (that is, the splitting defined above)

is this:

Dx**b = —(L + U)x® + b. (2.59)
The matrix M; = —D"'(L + U) is called the Jacobi matrix. In actual computa-
tion, Eq. (2.59) would have to be written out elementwise. Suppose the vector
x® is given by e

[0
: x2
P =

, k=0,1,2,.... (2.60)

xr(tk)

Then Eq. (2.59) leads to the following iteration for the ith component of x**:

i=1,2,...,n (2.61)

This formula shows that the Jacobi iteration is quite easy to program. The
only real problem is to determine an efficient test for terminating the iteration.
Also, it is obvious from (2.61) or from (2.59) that in order for the Jacobi method
to be used, the diagonal elements of A must all be nonzero. In practice, this
requirement causes no real difficulty. If A is the coefficient matrix of the system
Ax = b and if a; = 0, then the ith equation can be interchanged with another
equation that will give a coefficient matrix with a nonzero diagonal entry in the
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ith row. Thus the situation with the Jacobi method is similar to that of Gauss
elimination in which the possibility of zero pivot elements must be guarded
against.

Finally, we note that when D! exists, it is relatively easy (in comparison to
a direct method) to carry out each step of the iteration. Thus in those cases in
which ||[-D~'(L + U)|| < 1, the Jacobi method provides an alternative to direct
methods.

Examination of (2.61) reveals that each component of the vector x**V is
computed entirely from the vector x*. If x*+? is assumed to be closer to the
true answer than x®, the estimate for x**? should be improved by replacing
x® by x{*+V whenever j < i. That is, we should use our most recent information
as soon as it becomes available. The implementation of this idea leads to the
procedure known as the Gauss-Seidel method.

If we use the new information as soon as it is available in (2.61), we obtain
(after multiplication by a;;) this equation:

i—1 n
apx*V = =% ayxtV = % ayx® + by, i=1,...,n, (2.62)
i=1 j=i+1
(in which we interpret the first sum as zero when i = 1). We can write this
equation in matrix form, using A = L + D + U as in the Jacobi method, and
obtain

Dx(lc+1) — __Lx(k+l) _Ux(k) + b. (263)
Putting this in the standard form Eq. (2.56) for an iterative method, we have
D + L)x*tY = —Ux® + b. (2.64)

The matrix M, = —(D + L)'U is called the Gauss-Seidel matrix. Since the
Gauss-Seidel method is refinement of the Jacobi method, the former usually
(but not always) converges faster. For deeper results on convergence and com-
parison of rates of convergence, see the Ostrowski-Reich and Stein-Rosenberg
Theorems in Varga (1962). Note that the choice of the starting vector x is not
particularly critical, and one natural choice is xX® = 0. We will have more to say
of this choice in Section 3.4.

EXAMPLE 2.16. As an example of the sorts of computational results that the Jacobi
and Gauss-Seidel methods give, consider the linear system

3x; + X+ x3 =35 1
2%, + 6xs + x5 = with solution vector } 1
Xy + x5 + 4X3 =6 1

With x® = §, we obtain Tables 2.1 and 2.2. The coefficient matrix of the system is
diagonally dominant, a condition that is sufficient to guarantee convergence of the
Jacobi and Gauss-Seidel iterations (see Theorem 2.3).
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TABLE 2.1 Jacobi iteration.

k
k x(lk) x(gk) xé )

1 0.166667E 01 0.150000E 01 0.150000E 01
2 0.666667E 00 0.694445E 00 0.708333E 00
3 0.119907E 01 0.115972E 01 0.115972E 01
4 0.893518E 00 0.907022E 00 0.910301E 00
5 0.106089E 01 0.105044E 01 0.104986E 01
6 0.966564E 00 0.971392E 00 0.972166E 00
7 0.101881E 01 0.101578E 01 0.101551E 01
8 0.989568E 00 0.991144E 00 0.991350E 00
9 0.100584E 01 0.100492E 01 0.100482E 01
10 0.996753E 00 0.997251E 00 0.997312E 00
11 0.100181E 01 0.100153E 0t 0.100150E 01
12 0.998991E 00 0.999146E 00 0.999165E 00
13, 0.100056E 01 0.100047E 01 0.100047E 01
14 0.999687E 00 0.999735E 00 0.999741E 00
15 0.100017E 01 0.100015E 01 0.100014E 01
16 0.999903E 00 0.999918E 00 0.999919E 00
17 0.100005E 01 0.100005E 01 0.100004E 01
18 0.999970E 00 0.999974E 00 0.999975E 00
19 0.100002E 01 0.100001E 01 0.100001E 01
20 0.999991E 00 0.999992E 00 0.999992E 00

TABLE 2.2 Gauss-Seidel iteration.
x(lk) x(zk) x(3k)

0.166667E 01 0.944445E 00 0.847222E 00
0.106944E 01 0.100231E 01 0.982060E 00
0.100521E 01 0.100125E 01 0.998385E 00
0.100012E 01 0.100023E 01 0.999913E 00
0.999953E 00 0.100003E 01 0.100000E 01
0.999989E 00 0.100000E 01 0.100000E 01
0.999998E 00 0.100000E 01 0.100000E 01
0.100000E 01 0.100000E 01 0.100000E 01

0~ A WN - &

As an example in which iteration is not so successful, consider the (4 x 4)
linear system of Example 2.6 (solved by Gauss elimination in Example 2.7).
This coefficient matrix is positive-definite and hence the Gauss-Seidel iteration
will converge (see Theorem 2.4); but as can be seen, convergence is exceed-
ingly slow. (See Table 2.3.) The question of how fast an iterative procedure will
converge is considered in Section 3.4. Through the theory of the above-
mentioned section it can be shown that the Jacobi method will not converge for
the (4 X 4) system above.
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TABLE 2.3
k x4 X x40 X
1 0.460000E 01 ~0.199982E - 01 0.556000E 00 0.313602E 00
2 0.364720E 0l —0.173599E-01 0.843327E 00 0.529559E 00
3 0.308276E 01 —0.327911E-02 0.976370E 00 0.682185E 00
4 0.275076E 01 0.158432E —01 0.102290E 01 0.792917E 00
S 0.255742E 01 0.364410E —-01 0.102277E 01 0.875290E 00
6 0.244637E 01 0.566254E —01 0.999118E 00 0.937971E 00
7 0.238381E 01 0.754578E—01 0.965172E 00 0.986620E 00
8 0.234954E 01 0.925567E —01 0.928278E 00 0.102499E 01
9 0.233149E 01 0.107840E 00 0.892337E 00 0.105566E 01
10 0.232256E 01 0.121379E 00 0.859268E 00 0.108042E 0t
50 0.220322E 01 0.276739E 00 0.694661E 00 0.117948E 01
51 0.219950E 01 0.278992E 00 0.695580E 00 0.1178%4E 01
52 0.219578E 01 0.281235E 00 0.696501E 00 0.117840E 01
100 0.203333E 01 0.378932E 00 0.737633E 00 0.115422E 01
101 0.203012E 01 0.380858E 00 0.738446E 00 0.115374E 01
102 0.202693E 01 0.382777E 00 0.739256E 00 0.115326E 01
196 0.176445E 01 0.540536E 00 0.805902E 00 0.111409E 01
197 0.176208E 01 0.541962E 00 0.806505E 00 0.111373E 01
198 0.175972E 01 0.543384E 00 0.807103E 00 0.111338E 01
199 0.175736E 01 0.544801E 00 0.807701E 00 0.111303E 01
200 0.175501E 01 0.546213E 00 0.808298E 00 0.111268E 01

The question of convergence for iterative methods is sometimes hard to
analyze, for convergence depends on M = N~'P being small in some sense as is
shown in (2.57). For the Jacobi method, it is easy to display the form of the
Jacobi matrix M,. From (2.59) it follows quickly that

I

r

0

ann

(2.65)

An explicit representation for M, for a general matrix A is obviously more

complicated and it is of little use to find M.

While Theorem 2.2 provides a general criterion for convergence, it would
be helpful to have some convergence theorems that related specifically to the
Jacobi and Gauss-Seidel methods. In particular, the ideal theorem would be
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one that guaranteed convergence for all matrices in some particular class or for
all matrices that satisfy some particular property. Below, we illustrate two
theorems of this type, theorems that guarantee convergence for diagonally
dominant matrices and for symmetric positive-definite matrices. Diagonally
dominant matrices and symmetric positive-definite matrices, two important
types of matrices that occur frequently in practical problems, are defined be-
low.
We say a matrix A = (a;) is diagonally dominant if

‘aiil > E Iai,-‘, fOI’ i= 1, 2, ... R (2.66)
i
That is, each main diagonal entry is larger in absolute value than the sum of the

absolute values of all the off-diagonal entries in that row. An (n X n) matrix 4 =
(ay) is called symmetric if

AT = A, (2.67)

Clearly, an equivalent way of stating that A is symmetric is to say that a; = a;
for1 <i=<n,1 =j=< n. Finally, an (n X n) matrix A = (a;) is said to be
symmetric and positive-definite if

1. A is symmetric and
2. x"Ax>0forallx € R*, x # 0. (2.68)

[Note that since A is (n X n)and xis (n X 1), then Ax is (n X 1). Thus since x is
(n x 1), x"is (1 X n) and so we have that x” Ax is a scalar quantity. Most readers
will recognize x™ Ax as the familiar **dot product’ of the vector x and the vector
Ax.]

EXAMPLE 2.17. Consider the simple (2 X 2) matrix A, A = [? }]. Clearly A is
diagonally dominant and also symmetric. To determine whether A is positive-definite,

we consider
2 1 +
xTAx =[xy, 1, [1 3] [2] =[xy, X,] [2;“ N 3?].
1 2

Therefore xXTAx = 2x3 + X, + XoX; + 3x% = (x; + x)* + x7 4+ 2x%. Hence, we see that A is
positive-definite since x*Ax > 0 whenever x # 0. If we modify A and consider B =
[2 _1], then we still have that B is symmetric and diagonally dominant. However, B is
not positive-definite since for x = (), x™Bx = (0, 1)(_})) = -3 < Q.

Having the concepts of diagonally dominant and positive-definite, we can
now state two convergence theorems.

Theorem 2.3.

If A is diagonally dominant, then A is nonsingular and the
C ) sequence {x®
defined by the Jacobi method (2.59) converges for any initial guess x©- .
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Proof. Dividing both sides of inequality (2.66) by |a,| fori=1,2,...,n, we
obtain
1> E‘—a“ifori=l,2,...,n.

i=1 l ?'l'!

j*i
Referring to (2.65), we see that this inequality means that [|M,]l. < I. Conse-
quently, by Theorem 2.2, A is nonsingular and the Jacobi method will con-
verge. ]

The fact that a diagonally dominant matrix is nonsingular will be important
also in our study of cubic splines in Chapter 5. The proof of Theorem 2.4 is
more difficult and we defer it to Section 3.4.

Theorem 2.4.
If A is symmetric and positive-definite, then the sequence {x*'} defined by the
Gauss-Seidel method (2.64) converges for any initial guess x©.

Both of these theorems are quite useful in various computational settings. For
example, some numerical procedures result in large linear systems Ax = b,
which must be solved, where A is diagonally dominant. Theorem 2.3 guaran-
tees that the Jacobi method will work on this system. In Chapter 8 we consider
some finite-difference approximations to partial differential equations which
give rise to systems with symmetric, positive-definite coefficient matrices.

2.4.2. Implementation of Iterative
Methods

There are many other important iterative methods besides Jacobi and Gauss-
Seidel. Two other important, but rather more complicated methods are succes-
sive overrelaxation (SOR) and alternating-direction implicit methods (ADI)
(see Chapter 8). A good advanced reference is Varga (1962). Iterative methods
are normally used when it can easily be shown in advance that they will con-
verge and that they will require less computation than a direct method. The
numerical solution of partial differential equations provides the most common
area of application for iterative methods. When finite difference or finite ele-
ment schemes are used, the end result is to replace the partial differential
equation by a large matrix equation Ax = b. The matrix equation is an approxi-
mation to the partial differential equation, and the solution of Ax = b gives
approximate values for the function that satisfies the partial differential equa-
tion. These matrices have a structure that is known in advance; so it is normally
easy to see whether or not an iterative procedure will converge. Moreover,
these matrices are often quite large [say (1000 x 1000) perhaps] and sparse (that
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is, there are relatively few nonzero entries in the matrix). In the following, we
indicate how this ‘‘sparseness’’ can be exploited by an iterative method.
Note that an iterative method written in the form

x(k+ 1) — Mx(k) + g (269)

where M is (n X n) requires just »* multiplications per iteration. This observa-
tion forms a part of the reason why iterative methods are valuable since a direct
method like Gauss elimination takes about {#%3) multiplications. Thus if we are
satisfied with the approximate solution x* where & < n/3, we have saved
machine time. In the context of partial differential equations, since the equation
Ax = b is itself an approximation, it is not necessary to ask for an extremely
good estimate of the true solution x,. Another point to be made is that if the
matrix A is sparse [a typical example is when A is (1000 x 1000) with five
nonzero entries per row]}, then iterative methods can take advantage of the fact
that multiplication by zero is not necessary. For example in (2.61) or (2.62), if
only four of the coefficients a;;/a; are nonzero for each i, then only 5 multiplica-
tions are required to form x¢¥*?, Thus forming x**+? in the Jacobi method (or
the Gauss-Seidel method) would take 5n multiplications. The total number of
multiplications needed to form x from x¥ is then Snj. So for j = n%13, less
effort is needed to compute x? than is needed to solve the system by Gauss
elimination. A final consideration is that of storage since a matrix with only five
nonzero entries per row needs only Sn storage locations. If, however, Gauss
elimination is used on the same sparse system, (as a whole) the system may
become less sparse as the elimination proceeds. Thus Gauss elimination might
require many more than Srn storage locations. We should also remark that
sparse matrices arising from practical problems may have such a regular pat-
tern that programming this information is easy.

EXAMPLE 2.18. Consider a system of linear equations with the coefficient matrix
= -

123456788910
210000000 0
301000000 0
400100000 0
500010000 0
600001000 0 ity
700000100 0
800000010 0
90000000TL 0
10 0 0 0 0 0 0 0 0 1]

This provides a graphic example of a sparse matrix that becomes *‘dense’” as Gauss
elimination is used. To illustrate our point, this example is admittedly contrived in that
we could interchange the first and last rows, and solution by Gauss elimination becomes
almost immediate. The point of the example, however, is well taken and remains valid in
less contrived situations.
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PROBLEMS, SECTION 2.4

10.
11.

12.

13.

. Write a computer program to implement the Jacobi method.

Write a computer program to implement the Gauss-Seidel method.

. Test the Gauss-Seidel and Jacobi routines of Problem 1 and Problem 2 on the (2 X 2)

system ATAx* = ATb in Example 2.19 of Section 2.5.

. Let A = (a;) be the (4 x 4) diagonally dominant matrix given by a;; = 10,i=1,2,3,

4, and a;; = 2, for i # j. Use the Gauss-Seidel and Jacobi methods to solve Ax = b
where bT = (16, 24, 16, 8). [The exact solution is x™ = (1, 2, 1, 0).]
Let A = N — P where
5 0 -1 -1 1
N=}0 01, P=|-2 -1 2|
00 5 -1 -1 -1
a) Show that the iterative method for this splitting converges to the solution of
Ax = b.
b) Use (2.57) to argue why you expect the Jacobi method to converge faster than
this method.

0
4

.Fork=0,1,...,let x® = [x;, v, z,]" be generated by the equations

AXks1 = —Xp — Yp + i 2
6yre1 = 205 + ¥ — 7 —1
42y = Xt Y~ e+ 4

Show that the vector sequence {x**’}%_, is convergent for any initial vector x®, and
determine the vector x to which it converges. [Hint: Find A4, N, P, and b.]

. How many multiplications and divisions are required for one iteration of the

Gauss-Seidel method? How many iterations may be performed before this number
exceeds the operations count of Gauss elimination?

. If the (n X n) matrix A is nonsingular, then there is at least one nonzero entry in the

first column. (Why?) Suppose now that no matter what row interchange is made to
create a nonzero (1, 1) entry, the resuiting (2, 2), . .., (n, 2) entries are zero.
Examine the first two columns and explain why this situation contradicts the non-
singularity of 4.

. Let A be an (m X n) matrix. Using Problem 13, Section 2.1, show that ATA is an

(n X n) symmetric matrix.

If y is any (n X 1) vector, y # 68, show that y'y > 0.

Suppose A is an (in X n) matrix such that Ay # 0 for any (n X 1) vector y where y #
8. Using Problems 9 and 10, show that ATA is a symmetric, positive-definite matrix.
Using Problem 11, verify for the (4 X 2) matrix A in Example 2.19 that A™A is
symmetric and positive-definite. {From Theorem 2.4, the results of this problem
have a bearing on Problem 3.)

For the matrix ATA of Example 2.19, verify that the Jacobi matrix M, = —D(L +

U) is given by s R
< 7 0
M, = - [ (7)] and M3 = [5‘ %].

tolee &
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Using M3 = M3M3%, M5 = MIM3M?2, etc., show that the entries of M?" all tend to
zero as n — . From this information, give a bound for ||Mj|l.; and using (2.57),
show that the Jacobi method must converge for any initial guess x®. Note that ATA
is not diagonally dominant so that Theorem 2.3 does not apply. Additionally, ||M. ,”
> 1 for the three matrix norms of (2.41) so that Theorem 2.2 does not apply either.
However, the analysis of this problem shows why the Jacobi method is convergent
in Problem 3.

14. As another example of a slowly converging iterative method, use the Gauss-Seidel
iteration to solve the (2 x 2) system A,qx = b of Problem 8, Section 2.3.

15. Assume that an original system of equations has been altered to an equivalent

system Ax = b where each of the diagonal entries of A equals one (¢; = 1). From

1 (2.64) the splitting for the Gauss-Seidel method is (1 + L)x = —Ux + b. Multiplying
this equation by a scalar » and adding x to both sides lead to the iterative method

(I + oL)x**V = [(1 — o)l — o U% + wb.

(Verify these steps.) This method is called successive overrelaxation (SOR) and v is
called the relaxation factor. How would one use (2.57) to choose a value of o to
make this iteration faster than Gauss-Seidel? Program this method and try to find an
o that improves the convergence on the system of Table 2.3. (SOR methods are
frequently used on systems arising from partial differential equations. The choice of
w is a difficult and delicate matter, and the value of w is sometimes changed with
each step of the iteration.)

2.5 LEAST-SQUARES SOLUTION OF
OVERDETERMINED LINEAR SYSTEMS

We now return our attention to the linear system (2.1) [or Eq. (2.2) in matrix
form] in which we have m linear equations in n unknowns; and we consider the
case in which m > n. Since we have more equations than unknowns, we do not
normally expect a solution, x, of Ax = b to exist. (As pointed out previously, if
such an x does exist, Gauss elimination can be implemented to find it.) How-
ever, in this section we shall assume that Ax = b does not have a solution. The
reader may thus feel that this is necessarily an unimportant problem. Quite the
opposite is true, however, for we can reformulate the problem to ask for the
vector x* that somehow ‘‘minimizes’’ the vector expression (Ax* — b), That is,
find x* such that || Ax* — b||is minimized for some vector norm ||-||. In the case in
which we use the Euclidean norm, || L, this problem becomes precisely the
important statistical problem of finding the best least-squares solution of Ax =
b. We shall see later that this problem is a special case of the famous Fourier
series approximation problem, but for now we shall be content to solve it in this
one particular context.

Let A be any given (/n X n) matrix, and define Y to be the set of vectors y in
R™ such that

Y = {y € R y = Ax, for some x € R"}.
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Thus Y is in reality the ‘‘range of A’ and is a subset (actually a ‘‘subspace’’) of
R™, Since we have assumed that there is no x € R" such that Ax = b, then b
does not belong to Y in this case. (However, the following procedures would be
valid evenifb € Y.) Let x = (x,, x,, . . . , x,)" be arbitrary in R", and write A =
[A;, As, . . ., A, ] where each A, is the kth (n X 1) column vectorof 4,1 < k <
n. Recall from Section 2.1 that Ax can be written as

Ax = x1A1 + szz + e 4 ann.
Thus we see that Y can be equivalently written as
Y={yER™y=xA + 0A + -+ A,

Therefore we can see that our problem of minimizing ||Ax — b|}, can be restated
thus: find y* € Y such that |[y* — b||, < ||y — b|, forally € ¥, and then find x* €
R™ such that Ax* = y*. This problem can be formally solved easily by use of the
following theorem.

Theorem 2.5
Assume that there exists a vector y* € Y such that (b — y*)Ty = 0forally € Y.
Then |[b ~ y*|l, = ||b — y|. forally € Y.

Proof. We observe that if z is any vector in R, then z'z = ||z||3 and x"z = z"x.
Let y be any vector in Y and remember in the following that (b — y*)Ty = 0.

0=|b-yg=@®b-»Tb-y =b"b—2bTy +yTy
=bTb + 2(b — y*)Ty — 2b"y + yTy
= bTh + 2bTy — 2y*Ty — 2b%y + y'y
= bTh - y*Ty* + (y*Ty* - 2y*Ty + yTy)
={[bll3 - [ly*|l + (v* — »'G* — ¥

Thus ||b — y||3 =||b||3 — [ly*||2 + |ly* — y|, and obviously this last expression is
minimized if and only if y = y*. ]

The geometric rationale underlying this theorem is as follows: suppose that
Y is a plane in R® (in our particular case it is either a plane or a line through the
origin when m = 3). If b is not in this plane, then the closest point on the plane
to b is y* where y* is such that the projection vector, (b — y*), is perpendicular
to every y in the plane. Since (b — y*)"y is the usual ‘‘dot product” of (b — y*)
and y, (b — y*)"y = 0 means that (b — y*) and y are perpendicular. So this
theorem is a natural analytical extension of this geometric concept.

Later, when we investigate this problem in a more general setting, we will
have the necessary mathematical tools to prove that y*, as given in the above
theorem, always exists and is unique. For now we will merely assume that this
statement is always true. Under this assumption, there is always at least one
set of scalars, {x¥, x}, . . ., x¥}, such that y* = xfA, + x§A, + - + x¥A, =
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Ax* where x* = (x%, x§, . . . , x})T. Since every y € Y can be written as y =
XAy + XAy + 000+ XA, then (b — y¥)Ty = O for all y € ¥ is equivalent to
saying that (b — y*)TA; = Af(b — y*) =0for1 =i<n,or ATy* = ATh, 1 =i =
n. This statement gives a set of n simultaneous equations, which written in
vector form becomes

AT(Ax*) ATb
A (Ax* ATb

AD] A, @7
AT(Ax*) ATb

since y* = Ax*. It is easily verified by the basic rules of matrix multiplication
that if z is any vector in R™, then since the rows of AT are the columns of A,

Tz
Aty = | A%, .72)
A:flz
Therefore by (2.72), (2.71) reduces to the simple expression
ATAx* = ATh. 2.73)

This is an (# X n) linear system commonly known as the normal equations, and
a least-squares solution, x*, may be obtained by Gauss elimination or Gauss-
Seidel. (We note here that if Ax = b has an exact solution, x*, thatis,b € Y,
then x* is still a solution of ATAx* = ATb.)

A familiar problem that arises in this setting is the following: assume that a
function f(x) is known at the m distinct points {xg, x;, . . . , X,,_1}, and we wish
to find an (n — 1)st degree polynomial p(x) = gex" " + @ x" 2 + -+ @,_px +
a,_, that minimizes the expression 7§ (f(x;) — p(x;)? where m > n [p(x) is
the (n — 1)st degree best discrete least-squares polynomial fit for f(x)]. The
equations, f(x;) = p(x) = apx? '+ ax? 2 +---+ a,_;and 0 =i = m— 1, yield
the (m X n) linear system

1 Xo R _x(')l_l Ay f(xo)
Lox o [ ans | |l 2.74)
1 xmAl e xﬁ:i a() f(xm_l)

and the least-squares solution for {a;}?=,! is obtained via (2.73).

EXAMPLE 2.19. Suppose we wish to draw the straight line in the plane that comes
closest to ‘‘fitting”” the points (0, 1), (1, 2.1), (2, 2.9), (3, 3.2). As we indicated above, if
we set f0) = 1, f{1) = 2.1, f(2) = 2.9 and f(3) = 3.2, then we want g, and a, to minimize
S3_, [Ax) — p(x)]2 where p(x) = agx + a,and x; = i,i = 0, 1,2, 3. Hence we are led to
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the overdetermined system

a; = 1. 0 1 1
ata=21 11 [ao] _ 121
2a0 + a; = 2.9 2 1|]a, 29|

3qp + a; = 3.2 31 3.2

Then

. 14 6|]a 17.5
TAg* — AT 0] =

Thus we find a, = 1.19 and a, = 0.74. (See Fig. 2.3.)

3 —
2 —
y=0.74x+1.19
1
o | | | 1 1
-1 0 1 2 3 4

Figure 2.3 Least-squares straight-line fit (Example 2.19).

We have noted previously that matrices of the form ATA can be ill-
conditioned. For this reason, the particular problem of discrete least-squares
curve fitting is usually attacked by a different method, which we shall investi-
gate in a later section on polynomial approximations for functions.

PROBLEMS, SECTION 2.5

1. Use the methods of this section to find the best least-squares solution of the system
X+t x, =1
2x1 + Xy = 0
X1 — X9 &= 0.
2. If A denotes the coefficient matrix of the (3 % 2) system of Problem 1, show that
ATA is symmetric and positive-definite as in Problem 12, Section 2.4,
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. Consider the (3 X 3) system

X+ 3x, + Txg = 1
2x1+ Xp— x3=1
Xy + 2x, + 4x3 = 1.

Show the system has no solution (so that coefficient matrix A must be singular).
Next, find the best least-squares solution by the techniques of this section. Note
that even though ATA is singular, the equation corresponding to (2.73) is solvable.

. For the matrix A in Problem 3, find a nonzero vector x such that xT(ATA)x = 0, and

thus conclude that ATA cannot be positive-definite.

. Ify = ayx + a,, choose a, and q, such that this straight line is the best least-squares

fit to these (x, y) data points:

a) (1, 1), 4, 2), (8, 4), (11, 5)

b) (-1,0), (0, 1), (1,2), (2, 4)

c) (-2,2), (-1, D, (1,0), 2, -1.

. Ify = apx® + a;x + a,, choose a,, a,, and a, such that this quadratic is the best

least-squares fit to these (x, y) data points:
a) (-2,2,(-1,D,1,D,2,2
b) 0,0),(1,0,(2,1,3,2).

. Find ¢,, ¢;, and ¢, so that the expression y = ¢, + ¢; €OS x + G, sin x is a best

least-squares fit to the (x, y) data points (-=2, 1), (0, 0), (=2, 1/2), (=, 1).

. An(n X n) matrix B is called positive semidefinite if xTBx = 0 for all (n X 1) vectors

x. Show that any matrix B of the form B = ATA is positive semidefinite.

. Write a computer program to find a fourth-degree polynomial approximation to

f(x) = cos(x), for 0 < x < =, as follows.

a) Letx; = jm/20;j=10,1,...,20.
b) Set up Eq. (2.74) with m = 21 and n = 5, to find a best fourth-degree least-
squares approximation to cos(x) on xg, Xy, . . + , Xao-

¢) Having (2.74), form the system (2.73) and use a Gauss elimination routine to
solve for x*.

d) Let p(x) denote the resulting best fourth-degree polynomial approximation. Print
a table, listing p(y), f(y9, |p(y) — FO|/|f ()| for y; = (0.0Djm;j=0,1,2, . . .,
100; j + 50.

*2.6 THE CAUCHY-SCHWARZ INEQUALITY.}

Let x and y be vectors in R*, with x = (x;, X5, . . ., x)Tandy = (yy, Yas + -+ »
ya)T. We recall the familiar scalar or dot product, given by

Xy = Xy, + XpYe + 00+ XY

+This brief section is included for the sake of completeness and may be omitted without
loss of continuity. The ambitious reader will find that the ideas contained in this section
have wide-ranging application.



